UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2005

TITLE OF PAPER: ADVANCED PHYSICAL CHEMISTRY

COURSE NUMBER: C402

TIME:

THREE (3) HOURS

INSTRUCTIONS:

THERE ARE SIX QUESTIONS. EACH QUESTION IS WORTH 25 MARKS. ANSWER ANY FOUR QUESTIONS.

A DATA SHEET AND A PERIODIC TABLE ARE ATTACHED

GRAPH PAPER IS PROVIDED

NON-PROGRAMMABLE ELECTRONIC CALCULATORS MAY BE USED.

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO IS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1(25marks)

a. Distinguish between galvanic and electrolytic cells

[4]

- b. Use the Debye-Huckel limiting law to estimate the mean activity coefficient and activity of CaCl₂ in a solution that is 0.010 mol kg⁻¹ CaCl₂(aq) and 0.030 mol kg-1 NaF(aq). [6]
- c. Consider the cell below at 25 °C:

$$Hg(1)|Hg_2Cl_2(s)|HCl(aq,m)|H_2(g,P^{\theta})|Pt$$

$$E^{\theta}(Hg_2Cl_2, Cl, Hg) = 0.27 V$$

(i) Write the reaction occurring in the cell. [2]

(ii) Calculate the cell potential when the activity of HCl is 0.100.

[5]

Calculate the value of $\Delta_r G^{\theta}$ for the cell reaction. (iii)

[3]

Calculate the value of the equilibrium constant for the cell reaction. (iv)

[5]

(v) Which is the positive electrode and in which direction do electrons tend to flow? [2]

Question 2 (25 marks)

- Provide a molecular interpretation for the observation that the viscosity of a a. gas increases with temperature, whereas the viscosity of a liquid decreases with increasing temperature. [6]
- b. The molar conductivities of NaI and KI have been measured in a solvent that is 80% ethylene carbonate and 20 % water. The results are given in the table below:

	NaI	KI							
c/mmol L-1	Λ _m /Scm ² mol ⁻¹	c/mmol L-1	Λ _m /Scm ² mol ⁻¹						
32.02	50.26	17.68	42.54						
20.28	51.99	10.88	45.91						
12.06	54.01	8.719	47.53						
8.64	55.75	2.67	51.81						
2.85	57.99	1.28	54.09						
1.24	58.44	0.83	55.78						
0.83	58.67	0.19	57.42						

Verify Kolhrausch's law, $\Lambda_m = \Lambda_m^0 - \kappa c^{1/2}$ for both salts. (i)

(ii) Calculate
$$\Lambda_m^0$$
 for NaI and KI in this solvent. [2]

(iii) Calculate
$$\lambda^0(Na^+) - \lambda^0(K^+)$$
 [2]

- (iv) Compare your results in (ii) and (iii) with the analogous quantities in aqueous solution where $\lambda^0(Na^+) = 50.1 \text{ Scm}^2 \text{ mol}^{-1}$, $\lambda^0(K^+) = 73.50 \text{ S}$ cm² mol⁻¹ and $\lambda^0(\Gamma) = 76.8 \text{ Scm}^2 \text{ mol}^{-1}$. [4]
- c. Estimate the effective radius of a sugar molecule in water at 25 °C given that its diffusion coefficient is 5.2 x 10⁻⁶ cm² s⁻¹ and the viscosity of water is 1.0 x 10⁻³ kg m⁻¹ s⁻¹.

Question 3 (25 marks)

- a. Discuss the main features of the isolation method as used in the determination of rate laws. [5]
- b. The following date were obtained for the decomposition of dinitrogen trioxide:

Time/s	0	184	526	867	1877
$[N_2O_3]/\text{mol }L^{-1}$	2.33	2.08	1.67	1.36	0.72

- (i) Show that the decomposition follows first order kinetics. [6]
- (ii) Determine the value of the rate constant and half-life of the reaction. [4]
- c. For the reaction at 298 K,

$$CH_3CO_2^T + H^+ \Rightarrow CH_3CO_2H$$

 $k_f = 4.5 \times 10^{10} \, L \, mol^{-1} \, s^{-1}$ and $k_r = 8.0 \times 10^5 \, s^{-1}$. A solution is made from 0.100 mol acetic acid and enough water to make 1.00 L. Find the relaxation time, τ , if a small perturbation is imposed on the solution such that the final temperature is 298 K.

[5]

Question 4 (25 marks)

- a. In an experiment to measure the quantum efficiency of a photochemical reaction, the absorbing substance was exposed to 490 nm light from a 100 W source for 45 minutes. The intensity of the transmitted light was 40% of the incident light. As a result of irradiation, 0.344 mol of the absorbing substance decomposed. Find the quantum efficiency. [6]
- b. The rate constant for the bimolecular elementary gaseous reaction $CO + O_2 \rightarrow CO_2 + O$ Is 1.22×10^5 L mol⁻¹ s⁻¹ at 2500 K and 3.66×10^5 L mol⁻¹ s⁻¹ at 2800 K.
 - (i) Find the activation energy and pre-exponential factor. [7]
 - (ii) Assuming a hard sphere diameter of 350 pm for O₂ and of 360 pm for CO, calculate the value of the steric factor in the collision theory. [6]
- c. A proposed free radical chain mechanism for the decomposition of acetaldehyde consists of the following steps:

$$CH_3CHO \xrightarrow{k_1} CH_3^{\bullet} + CHO^{\bullet}$$

 $CH_3^{\bullet} + CH_3CHO \xrightarrow{k_2} CH_4 + CO + CH_3^{\bullet}$
 $2CH_3^{\bullet} \xrightarrow{k_3} C_2H_6$

Show that the rate of formation of methane is

$$\frac{d[CH_4]}{dt} = k_2 \left(\frac{k_1}{2k_3}\right)^{1/2} [CH_3 CHO]^{3/2}$$
 [6]

Question 5 (25 marks)

- a. What is the role of defects in adsorption on surfaces?
- b. The volume of methane, measured at STP (0°C, 1 atm), adsorbed on 1g of charcoal at 0 °C and several different pressures is

P/ cm Hg	10	20	30	40
V/cm ³	9.75	14.5	18.2	21.4

Show that the data follows the Freundlich isotherm, $\theta = c_1 P^{1/c_2}$ and determine the constants c_1 and c_2 [8]

c. In an experiment on the adsorption of ethene on iron it was found that the same volume of gas was desorbed in 1856 s at 873 K and 8.44 s at 1012 K.

- (i) What is the activation energy of desorption? [6]
- (ii) How long would it take the same amount of ethene to desorb at 298 K?

Question 6 (25 marks)

- a. Explain why the polarizability of a molecule decreases at high frequencies.

 [5]
- b. The polarizability volume of NH₃ is 2.22 x 10⁻²⁴ cm³. Calculate the dipole moment of the molecule (in addition to the permanent dipole moment) induced by an applied electric field of strength 15.0 kV m⁻¹. [5]
- c. Find the Miller indices of the planes that intersect the crystallographic axes at the distances (2a, 3b, 2c) and $(2a, 2b, \infty c)$ [4]
- d. Potassium nitrate crystals have orthorhombic unit cells of dimensions a = 542 pm, b = 917 pm, and c = 645 pm. Calculate the glancing angles for the (100), (010) and (111) reflections using Cu K_{α} radiation (154 pm). [11]

The End

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	С	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	,e	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	N_A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	и	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	$\mathrm{m}_{\scriptscriptstyle{ullet}}$	9.109 39 X 10 ⁻³¹ Kg
proton	m_p	1.672 62 X 10 ⁻²⁷ Kg
neutron	m_{n}	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{o} = 1/c^{2}\mu_{o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε,	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ_{o}	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
		$4\pi \times 10^{-7} \mathrm{T^2 J^{-1} m^3}$
Magneton	_	
Bohr	$\mu_{\rm B} = {\rm e}\hbar/2{\rm m}_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_N = e\hbar/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	8e	2.002 32
Bohr radius	$a_o = 4\pi \epsilon_o \hbar/m_e e^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{\infty} = m_e e^4 / 8h^3 c \epsilon_o^2$	$1.097\ 37\ X\ 10^7\ m^{-1}$
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV =	4.184 joules (J) 1.602 2 X 10 ⁻¹⁹ J	l erg l eV/molecule	=	1 X 10 ⁻⁷ J 96 485 kJ mol ⁻¹				
Prefixes	femto pico nano	μ m · c micro milli centi 10^{-6} 10^{-3} 10^{-2}	deci	k kilo 10³	M mega 10 ⁶	G giga 10°		

PERIODIC TABLE OF ELEMENTS

	7		6		6		Ŋ			4			u		,	2		•	-		PERIODS		
0,	Fr.	223	55	Cs	132.91	37	Rb	85.468	19	×	39.098	=	Za	22.990	w	Ξ.	6.941	_	=	1.008	ΙΛ		
00	Ra	226.03	56	Ba	137.33	38	Sr	87.62	20	Ca	40.078	12	Mg	24.305	4	Ве	9.012				VII	2	
07	**Ac	(227)	57	*La	138.91	39	×	88.906	21	Sc	44.956										IIIB	3	
104	Rf	(261)	72	Hf	178.49	40	Zr	91.224	22]	47.88										IVB	4	
5	Ha	(262)	<u>!</u>			4-	2	92.906	23	<	50.942										γв	5	
- 6	Unh	(263)	74	¥	183.85	42	M _o	95.94	24	Ç	51.996.		TRAN								VIB	6	
3	Uns	(262)	75	Re	186.21	43	Te	98.907	25	Μn	54.938		TRANSITION ELEMENTS								VIIB	7	
100	Uno	(265)	76	s 0	190.2	44	Ru	101.07	26	ĮГе	55.847		ELEM									8	G
107	Une	(266)	77	Ir	192.22	45	Rh	102.91	27	င္ပ	58.933	:	ENTS								VIIIB	9	GROUPS
	Uum	(267)	78	Pt	195.08	46	Pd	106.42	28	Z	58.69											10	
			79	Au	196.97	47	Αg	107.87	29	Cu	63.546				Atomic No.	Symbol	Atomic				18	11	
			80	Hg	200.59	48	Cd	112.41	30	Zn	65.39				c No.	bol _	Atomic mass —				IIB	12	
			<u>~</u>	7	204.38	49	In	114.82	<u>3</u>	Ga	69.723	13	Al	26.982	5	₩ ፡፡	10.811				AIII	13	
			82	Pb		i	Sn		32	င့	72.61	14	Si	28.086	6	C	12.011				١٧٨	14	
			83	Bi	208.98	51	Sb	121.75	33	As	74.922	15	P	30.974	7	z	14.007				\\ \	15	
			84	Po	(209)	52	Τc	127.60	34	Se	78.96	16	S	32.06	8	0	15.999				VIA	16	
			85	Αt	(210)	53	-	126.90	35	Br	79.904	17	Ω	w	9	<u>ب</u>	18.998				VII.A	17	
			86	Rn	(222)	54	Xe	131.29	36	X.	83.80	18	Ar	39.948	0	Ze	20.180	2	He	4.003	VIII/	18	

*Lanthanide Series

140.12 Ce 58

Pr 59

60 **Z**

(145) **Pm** 61

150.36 **Sm** 62

151.96 Eu 63

157.25 **Gd** 64

158.93 **Tb** 65

164.93 **Ho** · 67

167.26 E**r** 68

Tm 69

УЬ

168.93

173.04

174.97

162.50

140.91

144.24

**Actinide Series

232.04 **T1**₀ 90

238.03 U 92

93 N 17

(244) **Pu** 94

(243) Am 95

(247) Cm 96

(247) Bk 97

(251) Cf 98

(252) Es 99

(257) Fm 100

(258) **Md** 101

(259) **No** 102

(260) Lr Jo3

() indicates the mass number of the isotope with the longest half-life.