UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2005

TITLE OF PAPER:

ADVANCED

INORGANIC

CHEMISTRY

COURSE NUMBER:

C401

TIME ALLOWED:

THREE (3) HOURS

INSTRUCTIONS:

THERE ARE SIX (6) QUESTIONS. ANSWER ANY FOUR (4) QUESTIONS.

EACH QUESTION IS WORTH 25

MARKS.

A PERIODIC TABLE HAS BEEN PROVIDED WITH THIS EXAMINATION PAPER.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

QUESTION ONE

(c)

- (a) Determine the specified quantity on the basis of the 18-electron rule:
 - (i) The number of CO ligands in $[(\eta^5-C_5H_5)W(CO)_x]_2$ having W-W single bond.
 - (ii) The identity of the first-row transition metal in $(\eta^4-C_8H_8)M(CO)_3$.
 - (iii) The expected charge on [(CO)₃Ni-Co(CO)₃]^z.

[3]

[4]

- (b) Sketch the structures of the following compounds, given that the central metal atoms obey the 18-electron rule.
 - (i) $(\eta^3 C_3 H_5) Mn(CO)_4$
 - (ii) trans-bis[tetracarbonyl(triphenylphosphine)manganese(0)]

NaMn(CO)₅ reacts with H_2C =CHC H_2Cl to give A + B. Compound A obeys the 18-electron rule and shows protons in three distinct magnetic environments. Water-soluble compound B reacts with aqueous $AgNO_3$ to give a white precipitate that turns gray on exposure to light. When heated, A gives off gas C

- and converts to **D**, which has two distinct magnetic environments. Identify compounds **A** to **D**. [4]
- (d) Predict reasonable products for the following reactions:
 - (i) $(\eta^4-C_6H_6)Fe(CO)_3 + PPh_3 \rightarrow$
 - (ii) $Cr(CO)_6 + CH_2 = CH CH = CH_2 \rightarrow$
 - (iii) $Co(CO)_3(NO) + PPh_3 \rightarrow$
 - (iv) $Mo(CO)_6 + (CH_3)_2PCH_2CH_2P(Ph)CH_2CH_2P(CH_3)_2 \rightarrow$
 - (v) $H_3C-Mn(CO)_5 + SO_2 \rightarrow \text{(no gases are evolved)}$

[10]

- (e) For each of the following sets, which complex would be expected to have the highest C-O stretching frequency? Explain.
 - (i) $Fe(CO)_4(PF_3)$, $Fe(CO)_4(PCl_3)$, $Fe(CO)_4(PMe_3)$
 - (ii) $[Re(CO)_6]^+$, $W(CO)_6$, $[Ta(CO)_6]^-$

[4]

QUESTION TWO

(a)		e basis of clus ing species: Fe ₅ C(CO) ₁₅ Ni ₅ Os(CO) ₁₄	ster valence electron count, predict the structure	s of the
	()	1.1300(00)14		[.]
(b)	Based replace		nalogies, choose the organometallic fragments the	at might
	(i)	$\mathrm{CH_2}^+$	$Fe(CO)_4$, $Mn(CO)_5$, or $Re(CO)_4$	
	(ii)	CH^-	Ni(CO) ₃ , Co(CO) ₃ , or Mn(CO) ₄	
	(iii)	CH ₃	$(\eta^5-C_5H_5)Co(CO)$, Mn(CO) ₅ , or Cr(CO) ₆	[3]
(c)	Use W	ade's rules to p	redict the structures of the following:	
	(ii)	$[Rh_7(CO)_{16}]^{3-}$		
	(iii)	$Fe_4C(CO)_{13}$		[6]
(d)	Consid (i) (ii)	Write down th	ear carbonyl hydride complex, H ₂ Os ₃ (CO) ₁₀ e equation for the formation of this species. ication of the 18-electron rule, comment on the stre	ucture of
	(iii)		eactivity of this molecule to that of the complex Os ₃	(CO) ₁₂ . [6]
(e)			servation that only a single carbonyl stretching $Co(CO)_3(PPh_3)_2]^+$.	band is [3]
(f)	(i) With v		g species: (ii) $(\eta^5-C_5H_5)Ni$ (iii) BF species are CO, Co(CO) ₂ and $(\eta^6-C_6H_6)Co$ isoelects are concerned?	tronic so
QUES	TION '	THREE		
(a)	(i) (ii) (iii)	What are the re What is the r	ridative addition" reaction? Give an example. equirement(s) for such a reaction to occur? reverse reaction called? State three requirements avour this reaction.	s on the
(b)	(i)	_	hanism for the following reaction: $-CH_2 + CO + H_2 + Co_2(CO)_8 \rightarrow RCH_2CH_2CH_0$	[8]
	(ii)		counts for all the species postulated to be involved	
	(iii)	Kinetic studie enhanced by a	for the reaction shown in (i) above. es indicate that the hydroformylation reaction n increase in H ₂ pressure and inhibited by an increa v is the mechanism in the above cycle consistent w	se in CO

QUESTION FOUR

(a)	Discu	ss the steady decrease in ionic size of the Ln3+ ions across the period	l.[5]
(b)	(i)	Why are the colours of Ln ³⁺ ions less intense than those of the transition metal ions?	first-row [3]
	(ii)	Which Ln ³⁺ ions would you expect to show the same colour as (1) Eu ³⁺ (2) Pr ³⁺ (3) Dy ³⁺ Eurolein	[3]
	(iii)	Explain. Why are Eu ²⁺ and Yb ²⁺ somewhat more stable with respect to o than other Ln ²⁺ cations?	[2] oxidation [3]
(c)	(i) (ii)	Determine the number of unpaired electrons in Er ³⁺ . Derive the ground state term symbol for Er ³⁺ , and calculate its moment.	[1] nagnetic [6]
	(iii)	Write the symbols of two lanthanide metal ions whose magnetic recan be calculated by the spin-only formula.	
QUE	STION	FIVE	
(a)	(i)	It the products of the following reactions of interhalogens: $IF_5 + CsF \rightarrow ClF_3 + H_2O \rightarrow$	
	. ,	$BrF_5 + F_2 \rightarrow$	[3]
(b)		ructure of I_3^- is highly sensitive to the identity of the counter-ion. I ucture of I_3^- in combination with $[N(CH_3)_4]^+$	Describe
	(ii)	Cs ⁺	[4]
(c)		the self-ionisation reaction for ICl and predict the structure for the ound formed.	anionic [3]
(d)	predic	st an <u>equation</u> for the preparation of each of the following spect the <u>structure</u> of each of them. [ICl ₄] (ii) [BrICl]	
<i>(</i>)	(i)		[6]
(e)	(i) (ii)	Give <u>two</u> ways used to prepare actinide metals from actinide salts. State the <u>two</u> factors on which the general methods for the prepar synthetic actinides depend.	
	(iii)	Using the reactor irradiation method, write down a sequence of reactions that will produce $^{237}_{93}Np$ from $^{235}_{92}U$	

QUESTION SIX

(a)	(i)	For each of the following elements, identify one significant	role in
		biological processes: (1) Mg	[1]
		(1) Mg (2) Co	[1]
		(3) K	[1]
	(;;)		[1]
	(ii)	Why are d metals such as Mn, Fe, Co, and Cu used in redox en preference to Zn, Ga, and Ca?	
	(iii)	Metal ions in animals are often coordinated by nitrogen dono	[1]
	(111)	Give two examples of Nature's nitrogen ligands.	
		Give two examples of Nature's introgen figures.	[2]
(b)	Briefl	y discuss CO poisoning.	[3]
` ,		· · · ·	
(c)	Using	the most appropriate acid-base theory, identify the acids and	bases in
	the fo	llowing reactions:	
	(i)	$SiO_2 + Na_2O \rightarrow Na_2SiO_3$	[2]
	(ii)	$\text{Cl}_3\text{PO} + \text{Cl}^- \rightarrow \text{Cl}_4\text{PO}^-$	[2]
	(iii)	$BF_3 + 2ClF \rightarrow Cl_2F^+ + BF_4^-$	[2]
(d)	(i)	Name three properties that determine the utility of a solvent.	[3]
(-)	(ii)	Predict whether the equilibrium constants for the following	
	()	should be greater than 1 (reaction lies to the right) or less than 1	
		lies to the left):	(
		$(1) CdI_2 + CaF_2 + CdF_2 + CaI_2$	[2]
	,	(2) $[CuI_4]^{2-} + [CuCI_4]^{3-} \Rightarrow [CuCI_4]^{2-} + [CuI_4]^{3-}$	[2]
	(iii)	Account for the trend in acidity:	. ,
	` /	[Fe(OH-)] ²⁺	[2]

PERIODIC TABLE OF ELEMENTS

	18	VIIIA	4.003	He	7	20.180	Ne	10	39.948	Ar	8	83.80	Kr	36	131.29	Xe	54	(222)	Rn	86			
	17	VIIA				18.998	E	6	35.453	ರ	17	79.904	Br	35	126.90	_	53	(210)	At	85			
	16	VIA				15.999	0	∞	32.06	S	16	78.96	Se	34	127.60	Te	52	(505)	\mathbf{P}_{0}	84			
	15	٨٨				14.007	Z	7	30.974	<u>~</u>	15	74.922	As	33	121.75	Sp	51	208.98	Bi	83			
	14	IVA				12.011	ပ	9	28.086	Š	14	72.61	Ge	32	118.71	Sn	50	207.2	Pb	82			
	13	IIIA				₩0.811	<u>~</u>	\$ †	26.982	¥	13	69.723	В	31	114.82	In .	46	204.38	I	81			
	12	IIB				Atomic mass -	lbol –	ic No.				62.39	Zn	30	112.41	و	48	200.59	Hg	80			
	11	IB				Atomi	Symbol	Atomic No.				63.546	ر د	59	107.87	Ag	47	196.97	Αn	79			
	10											58.69	Z	28	106.42	Pd	46	195.08	¥	78	(267)	Unn	110
GROUPS	6	VIIIB								ENTS	}	58.933	ပိ	27	102.91	Rh	45	192.22	ľ	22	(566)	Une	109
G	8									ELEM		55.847	Fe	56	101.07	Ru	44	190.2	o	9/	(265)	Uno	801
	<i>L</i>	VIIB								SITION ELEMENTS		54.938	Mn	25	28.907	Tc	43	186.21	Re	75	(292)	Uns	107
	9	VIB								TRAN		51.996	Ċ	24	95.94	Mo	42	183.85	≱	74	(263)	Unh	106
	5	ΛB										50.942	>	23	92.906	g	41	180.95	Ta	73	(292)	Ha	105
	4	IVB										47.88	Ξ	22	91.224	Zr	40	178.49	Ht	72	(261)	R	104
	3	IIIB										44.956	Sc	21	88.906	X	39	138.91	*La	27	(227)	**Ac	68
	2	IIA				9.012	Be	4	24.305	Mg	12	40.078	Ca	20	87.62	Sr	38	137.33	Ba	99	226.03	Ra	88
	1	٧	1.008	H	-	6.941	Ľ	3	22.990	Z	11	39.098	×	16	85.468	Rb	37	132.91	ű	25	223	로	87
		PERIODS		1			7	l		ю			4			v.			9			7	

140.12	10.12 140.91	144.24	(145)	150.36	151.96	_	158.93	162.50	164.93	167.26	168.93	_	174.97
ಲಿ	P	PN	Pm	Sm	Eu		Tp	Dy	Ho	Er	Tm		Lu
28	59	99	19	62	63	49	9	99	29	89	69	02	11
232.04	232.04 231.04	238.03	237.05	(244)	(243)	1	(247)	(251)	(252)	(257)	(258)		(260)
Th	Pa	n	a N	Pu	Am	CIII	Bk	Ç	ES	Fm	Md		Ľ
96	91	92	93	8	95	%	26	86	66	100	101		103
	7	ington the	when the most notes	- hour	Ctha ina	Jaine and	the low	Sil Half life	Jif.				

*Lanthanide Series

**Actinide Series