DEPARTMENT OF CHEMISTRY UNIVERSITY OF SWAZILAND

C 304

Instrumental Analysis

May 2005 Final Examination

Time Allowed:

Three (3) Hours

Instructions:

- 1. This examination has six (6) questions, one (1) graph sheet, and one data sheet. The total number of pages is seven (7) excluding this page.
- 2. Answer any four (4) questions fully; diagrams should be clear, large and properly labeled. Marks will be deduced for improper units and lack of procedural steps in calculations.
- 3. Each question is worth 25 marks.

Special Requirements:

- 1. Graph Sheet
- 2. Data Sheet

YOU ARE NOT SUPPOSED TO OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GIVEN BY THE CHIEF INVIGILATOR.

Some Useful Physical Constants:

 $\begin{aligned} & h = 6.626 \text{ X } 10^{-34} \text{ J s} \\ & c = 2.998 \text{ X } 10^8 \text{ m sec}^{-1} \\ & N = 6.02 \text{X } 10^{23} \text{ mol}^{-1} \\ & k = 1.381 \text{ X } 10^{-23} \text{ JK}^{-1} \\ & 1 \text{ eV} = 1.602 \text{ X } 10^{-19} \text{ J} \\ & R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1} \end{aligned}$

Atomic weights: Fe = 55.85; S = 32.06; O = 16.00; H = 1.008; N = 14.01; C = 12.01

QUESTION 1 [25]

- (a) Hemin, C₂₀ H₂₀ N₄Fe is a oxygen carrying porphyrin component of the haemoglobin molecule. Being highly conjugated, hemin shows distinct absorption bands in the UV-visible portion of the electromagnetic spectrum.
 - i) List the upper and lower limit of the UV-visible region in wavenumbers (cm⁻¹) [1]
 - ii) What type of transition is likely to be taking place when molecules of hemin interact with photons in the subregion mentioned in (i) above? [1]
 - iii) What does the spectroscopic term "bathochromic shift" mean? [1]
- (b) Crystals of hemin were dissolved in concentrated nitric acid and the resultant solution diluted to 100 mL to form a 2 ppm solution. A UV-visible spectrum of the resulting solution as taken, whereby in a 11.7 mm cell, it showed a strong absorption at $\lambda_{\text{max}} = 520 \text{ nm}$ of 0.528 absorbance units.
 - i) Sketch the spectrum of this compound [1]
 - ii) What is the transmittance in % of the sample at λ_{max} ? [2]
 - iii) Calculate the molar absorptivity of this compound at $\lambda_{max}[2]$
- (c) The "monochromator" in a spectrometer is a critical component.
 - i) What role does a "monochromator" play in a spectrometer? [1]
 - ii) Describe, using diagrams, the following filters acting as monochromators in a spectrometer:
 - (ii-1) a band pass filter [3]
 - (ii-2) a cut-off filter [3]
- (d) i) Use equations to explain why the source and sample in a spectrometer are kept in a darkened compartment [4]
 - ii) Use equations to explain why measurements in a spectrometer are taken at the "peak" rather than at the "shoulder" [6]

QUESTION 2 [25]

- (a) In the analysis of Fe in natural waters, several reagents are added prior to complexation with 1,10 phenanthroline. Explain the role of the following in this analysis:
 - i) hydroxylamine hydrochloride [1]
 - ii) sodium acetate/acetic acid buffer [1]
 - iii) a blank [1]
- (b) A solution of two isomers, ortho- and para-, are simultaneously determined by uv-visible spectroscopy. At 410 nm, the measured absorbance was 0.353, whereas at 560 nm, the absorbance was 0.251 in a 1.00 cm cell.

- Calculate the concentration of the two isomers (molar absorptivities at 410 nm are: 6000 for ortho-, 500 for para-; at 560 nm they are 2152 for ortho-, 5260 for para-) [5]
- (c) Use diagrams to explain how the "Molar Ratio Method" can be used to determine stoichiometry [3]
- (d) Draw the expected Job's plot for a complex M_nL_x where n=x=1 at low ligand concentration, and n=1,x=3 at high ligand concentration [3]
- (e) Two elements, X and Y, are to be analyzed by flame AA and flame emission. The transition for element X is designated ${}^2S_{1/2} \longrightarrow {}^2P_{3/2}$ and has a wavelength of 852.1 nm. For Y it is ${}^1S_0 \longrightarrow {}^1S_1$ and has a wavelength of 228 nm. What is the ratio of excited to ground state atoms if the flame is operated at 2250 °C for each element? [6]
- (f) Use the ratios obtained in (d) above to decide which element is best analyzed by which method. State a reason for your choice in each case [2]
- (g) Name three elements that are determined by flame photometry in clinical analysis [3]

QUESTION 3 [25]

- (a) The most widely used region in the electromagnetic spectrum for organic functional group identification is the infra-red (IR) region.
 - i) What are the borders of IR in electron volts? [2]
 - ii) Using the CO₂ molecule as an example, describe two (2) common modes of molecular vibrations that give rise to IR radiation [2]
- (b) In dispersive IR, double beam instruments are used, whereby two beams pass through the sampling area before reaching the monochromator and detector.
 - i) Explain why the beam is split into two before reaching the sampling area [2]
 - ii) Explain why the beams pass through the sampling area before reaching the monochromator and not after it [2]
 - iii) Explain why the exact opposite of the arrangement in (ii) above is done in UV-visible instrumentation [2]
- (c) Analytical instruments configured in the Czerny-Turner arrangement of optical components use a "grating" as a monochromator.
 - i) In physical appearance, what does the grating look like? [1]
 - ii) State the Bragg equation for the grating, and explain all the terms that appear in it [3]
 - iii) If the grating is 5 cm wide with 11, 800 lines/mm, calculate its first order resolving power [3]
- (d) Although it is primarily a functional group identification tool, IR spectroscopy may sometimes be successfully used for quantitative analysis of organic compounds. One such case is the quantitative analysis of Thio-Mickler's Ketone (TMK), where the carbonyl functional group of TMK appearing at 1785 cm⁻¹ is used. Supposing a 5.2031-g tablet containing TMK is dissolved in 100 mL, and that this solution, together with TMK standards, yielded the following results:

Sample	I	Io	Absorbance
0 ppm standard	A	5638	0.000
2 ppm standard	4351	В	0.103
4 ppm standard	3526	5641	С
Unknown	4025	5636	

- i) Calculate A [1]
- ii) Calculate B [1]
- iii) Calculate C [1]
- iv) Draw the calibration curve of TMK [2]
- v) What was the concentration (in µg/g) of TMK in the unknown sample [3]

QUESTION 4 [25]

- (a) Analytical chemists agree that the technique of atomic absorption "came of age" with the invention of the hollow cathode lamp by Sir Walsh in 1955.
 - i) Draw and label the hollow cathode lamp [2]
 - ii) Explain how the hollow cathode lamp works [2]
- (b) There are procedures commonly employed by analysts when using a flame atomic absorption spectrophotometer. Explain
 - i) Why in the analysis of Ca in soils, EDTA is added to all solutions [1]
 - ii) Why in the analysis of Sr in foodstuffs, 1000 ppm La is added to all solutions [1]
 - iii) Why in the analysis of Cu in a plant sample, the instrument is operated under "standard additions" mode [1]
- (c) A major breakthrough in atomic absorption spectrophotometry since the invention of the hollow cathode lamp is graphite furnace AA.
 - i) What is the major structural difference between flame AA and graphite furnace AA? [2]
 - ii) Identify the physical stages involved in a furnace program, and describe the processes that occur during each stage [3]
 - iii) Describe two (2) advantages of graphite furnace AA over flame AA [2]
- (d) In 2001, the Swaziland Water Services Corporation acquired a new atomic spectrometer called the Liberty 110 ICP.
 - i) What does the acronym ICP stand for? [1]
 - ii) Explain how a "doughnut" shaped ICP is formed, and why it is preferred over a "tear-drop" shaped ICP.
 - iii) What are the normal operating values of the ICP in terms of:

 Power in KW-------[1] Temperature in K------[1]
 - iv) In the ICP, direct reading of several lines at once is possible. With the aid of a diagram, explain how this is possible [3]
 - v) List two (2) advantages of ICP compared to FAAS or GFAAS [2]

QUESTION 5 [25]

Gas Chromatographic techniques have many applications in analytical chemistry, especially in the area of pesticide and drug analysis.

- (a) In GC, explain what is meant by
 - i) Temperature programming [1]
 - ii) the "race-track" effect [1]
- (b) The power of separation, technically the "resolution" in GC, depends on the plate number, or alternatively the HETP, which has its theoretical origins embodied by the Van Deempter principle. With regards to HETP for a GC packed column,
 - i) explain the origin of "Eddy Diffusion"[1]
 - ii) write down the equation that relates HETP to Eddy Diffusion, and explain all terms that appear in it [2]
 - iii) explain the origin of "Longitudinal Diffusion"[1]
 - iv) write down the equation that relates HETP to Longitudinal Diffusion, and explain all terms that appear in it [2]
- (c) Draw the Van Deempter Plot for packed column GC, and identify the point in the plot that is used to determine the optimum velocity of carrier gas [3]
- (d) A GC instrument equipped with a 3-m steel column packed with Chromosorb W-AW on PEGS stationery phase and a Flame Ionization Detector, was used to quantify two alcohols, methanol and ethanol. 2-butanol was used as an internal standard. In the chromatogram, an unretained air peak appeared at 30 sec, while peaks for the two alcohols of interest appeared at 3 and 3.5 min respectively.
 - i) What is meant by the prefix "AW" in Chomosorb W-AW? [1]
 - ii) State the order in which the three alcohols will elute out of the analytical column [1]
 - iii) Describe the role of 100%v/v 2-butanol in the analysis [1]
 - iv) Draw and label a diagram of an FID, and explain how it works [4]
 - v) Calculate the capacity factor of ethanol [2]
 - vi) If the column had 320 theoretical plates, what is the width of the methanol peak? [2]
 - vii) Are these two peaks properly resolved? Explain why or why not [3]

QUESTION 6 [25]

Liquid Chromatographic techniques have many applications in analytical chemistry, especially in the area of food and drug analysis.

- (a) In LC, explain what is meant by
 - i) Solvent programming [1]
 - ii) Isocratic elution [1]

- (b) The power of separation, technically the "resolution" in LC, depends on the plate number, or alternatively the HETP, which has its theoretical origins embodied by the Van Deempter principle. With regards to HETP for an LC packed column,
 - i) explain the origins of "Resistance to Mass Transfer in the Stationary Phase"[2]
 - ii) write down the equation that relates HETP to Resistance to Mass Transfer in the Stationary Phase, and explain all terms that appear in it [3]
 - iii) explain the origin of "Resistance to Mass Transfer in the Stagnent Mobile Phase"[2]
 - iv) write down the equation that relates HETP to "Resistance to Mass Transfer in the Stagnent Mobile Phase", and explain all terms that appear in it [3]
- (c) Draw the Van Deempter Plot for packed column LC, and identify areas in the plot which are different from those of gas chromatography [3]
- (d) HPLC is widely used for Vitamin A analyses. In a typical analysis, after pre-treatment and priming, both sample and standards are injected into an HPLC instrument fitted with a 20-cm 0.5-in. glass column in a reverse-phase bonded phase mode. Eluents are detected by means of a uv detector at 254 nm.
 - i) What does the acronym "HPLC" stand for? [1]
 - ii) Describe the process of "priming"in HPLC [1]
 - iii) What is the reason for the use of bonded phases in HPLC? [1]
 - iv) Use chemical equations to describe how bonded phases are synthesized in the laboratory [3]
- (e) In a lot of instances, column materials are "silinized" in chromatography.
 - i) What is the role of "silinization" in chromatography [1]
 - ii) Use chemical equations to describe how silinization is achieved in the laboratory [3]

```
ACID-DIADE
                Inercator
                                                             pH range pKin
                                                                                                       Acid
                                                                                                                                 Basa
                                                                                                                                                                 Q<sub>9 0</sub>
0.94
                                                                                                                                                                                          n Q<sub>90</sub>
6 0.56
                                                                                                                                                                                                                                                         D.F.
                                                                                                                                                                                                                                   \begin{smallmatrix}\mathbf{Q}_{9\,0}\\0.44\end{smallmatrix}
                                                                                                                                                                                                                                                                     t<sub>50</sub>
          Thymol blue
                                                                                                                                                                                                                                                                                                           64
9.
                                                              1.2 - 2.8
2.9 - 4.0
                                                                                        1.6
                                                                                                    red
                                                                                                                               yellow
                                                                                                                                                                                                                                                             12
        Methyl yellow
Methyl orange
                                                                                                                                                                                                                           9
                                                                                         3.3
                                                                                                     red
                                                                                                                                vellow
                                                                                                                                                                 0.76
                                                                                                                                                                                                  0.51
                                                                                                                                                                                                                                                                     0.82
                                                                                                                                                                                                                                                                                   2.9
                                                                                                                                                                                                                         10
                                                                                                                                                                                                                                    0.41
                                                               3.1 - 4.4
                                                                                         4.2
                                                                                                                                yellow
                                                                                                                                                                 0.64
                                                                                                                                                                                                                                                                                  2.35
2.1)
                                                                                                                                                                                          8
                                                                                                                                                                                                  0.47
                                                                                                                                                                                                                                                                     0.76
         Bromocresol green
                                                               3.8 - 5.4
                                                                                                     yellow
                                                                                         4.7
                                                                                                                               blue
                                                                                                                                                                                                                                                                     0.74
                                                                                                                                                                                                                                                                                                             4.
4.
3.
                                                                                                                                                                                                                                                                                               2.8
                                                              4.2 - 6.2
4.8 - 6.4
        Methyl red
                                                                                                                                                                       15. Bond Enthalpies
                                                                                        5.0
                                                                                                     red
                                                                                                                               yellow
                                                                                                                                                                                                                                                                     0.73
                                                                                                                                                                                                                                                                                   2.02
                                                                                                                                                                                                                                                                                                2.57
        Chlorophenol red .
                                                                                                                                                          kJ mol-1 at 25°C (i.e. Bond Energies)
Single O N C S F C1
                                                                                         6.0
                                                                                                    vellow
                                                                                                                               red
                                                                                                                                                                                                                                                             6
                                                                                                                                                                                                                                                                    0.72
                                                                                                                                                                                                                                                                                  1.94
                                                                                                                                                                                                                                                                                                2.45
                                                                                                                                                                        O N C S
463 391 413 368
                                                               6.0 - 7.6
                                                                                                                                                                                                                                   C1
432
        Bromothymol blue
                                                                                                    yellow
                                                                                                                                                                                                                                                                    0.71
                                                                                                                                                                                                                                                                                  1.90
                                                                                                                               blue
                                                                                                                                                                                                                                                                                                2.36
                                                                                                                                                                                                                                                                                                             3.
                                                                                                                                                           Η
                                                                                                                                                                                                                     563
        Phenol red
                                                              6.4 - 8.0
7.4 - 9.0
                                                                                                    yellow
                                                                                                                                                                                                                                                                                                2.31
                                                                                                                                                                   358 305 346 272 489 328

222 163 MISC. 275 192

-S 251 H—H 436 C=C 615

-F 327 N=N 946 C=C 812

-C1 271 N=O 607 C=O 749
                                                                                                                                                                                                                                                                                   1.86
                                                                                                                                                                                                                                                                                                             3.
                                                                                                                               red
        Cresol purple
Thymol blue
                                                                                        8.3
                                                                                                                               purple
blue
                                                                                                                                                                                                                                                                    0.70
                                                                                                    yellow
                                                                                                                                                                                                                                                                                   1.83
                                                              8.0 - 9.6
                                                                                                    yellow
                                                                                                                                                                                                                                                          10
                                                                                                                                                                                                                                                                    0.70
                                                                                                                                                                                                                                                                                                             3.
2.
                                                                                        8.9
                                                                                                                                                                                                                                                                                  1.81
                                                                                                                                                                                                                                                                                                2.23
        Phenolphthalein
                                                                      -9.8
                                                              8.0
                                                                                        9.7
                                                                                                                                                                                                                                                                    0.69
                                                                                                                                                                                                                                                                                  1.72
                                                                                                                                                                                                                                                                                                2.09
                                                                                                    colorless
                                                                                                                               red
        Thymolphthalein
                                                                                                                                                                                                                                                          30
                                                                                                                                                                                                                                                                    0.68
                                                             9.3 - 10.5
                                                                                        9.9
                                                                                                                                                                                                                                                                                                2.04
                                                                                                    colorless
                                                                                                                               blue
                                                                                                                                                                                                                                                           8
                                                                                                                                                                                                                                                                    0.67
                                                                                                                                                                                                                                                                                 1.64
                                                                                                                                                                                                                                                                                                1.96
                12. ELECTRODE POTENTIALS, 8°
                                                                                                                                        16. HEATS OF FORMATION
                                                                                                                                                                                                                                       20. CONC. ACIDS AND BAS
                                                                                                                                        Δ H° in kJ mol-1 at 25°C
All ions in H<sub>2</sub>O solution except as noted
        Na' + e 

Na Na
                                                                                                    -2.713
                                                                  SLA
        Mg^{**} + 2e \Longrightarrow Mg
                                                                                                                                                                                                                                                                                                       Mola
                                                                                                    - 2.37
                                                                                                                                                        All Elements = 0
                                                                                                                                                                                                                                                            M.W. Density Wt. %
        Al*** + 3e ≒ Al
                                                                                                    -1.66
                                                                                                                                                                                    0.0 H<sub>2</sub>O<sub>g</sub> -
                                                                                                                                                                                                                                           Acetic
                                                                                                                                                                                                                                                              60.05
                                                                                                                                                    218
                                                                                                                                                               H+
                                                                                                                                                                                                                                                                              1.05
                                                                                                                                                                                                                                                                                             99.5
        Zn^{+} + 2e \leftrightharpoons Zn
                                                                                                   - 0.763
                                                                                                                                                                                                                                         H<sub>2</sub>SO<sub>4</sub>
                                                                                                                               O,
                                                                                                                                                                                                                                                              98.07
                                                                                                                                                   249
                                                                                                                                                               Na+
                                                                                                                                                                                    -240 H<sub>2</sub>O<sub>1</sub> —286
                                                                                                                                                                                                                                                                               1.83
                                                                                                                                                                                                                                                                                              94
        Fe'' + 2e ← Fe
                                                                                                                                                               Ag<sup>+</sup>
NH<sub>4</sub>+
                                                                                                   -0.44
                                                                                                                              C,
N,
                                                                                                                                                                                                                                                               20.01
                                                                                                                                                                                                                                                                               1.14
                                                                                                                                                                                                CŌ,
                                                                                                                                                    717
                                                                                                                                                                                    106
                                                                                                                                                                                                                                                                                              45
       Cd… + 2e 与 Cd
                                                                                                                                                                                                                                         HCI
                                                                                                   - 0.403
                                                                                                                                                                                                                                                               36.46
                                                                                                                                                   473
                                                                                                                                                                                                 CO<sub>2</sub>
                                                                                                                                                                                                                                                                               1.19
                                                                                                                                                                                                                                                                                              38
                                                                                                                                                                                                                                                                                                             1:
                                                                                                                                                                                    -133
                                                                                                                                                                                                                       394
                                                                                                   - 0.38
        Cr*** + e 与 Cr**
                                                                                                                              F,
C1,
                                                                                                                                                                                                NH_{30}
                                                                                                                                                                                                                                         HBr
                                                                                                                                                                                                                                                               80.91
                                                                                                                                                                                                                                                                               1.52
                                                                                                                                                     79
                                                                                                                                                               OH-
                                                                                                                                                                               --230
                                                                                                                                                                                                                        -46
                                                                                                                                                                                                                                         HNO<sub>3</sub> 63.01
HClO<sub>4</sub> 100.46
        Tl⁺ + e ⇔TÎ
                                                                                                   - 0.336
                                                                                                                                                   122
                                                                                                                                                                                                NO,
                                                                                                                                                                                                                                                                               1.41
                                                                                                                                                                                                                                                                                              69
                                                                                                                                                                                    -333
      V''' + e ⇒ V''
Sn'' + 2e ⇔ Sn
                                                                                                                                                                                                                         90
                                                                                                                              \mathbf{Br}_g
                                                                                                   -0.255
                                                                                                                                                   112
                                                                                                                                                                C1-
                                                                                                                                                                                                NO<sub>2</sub>
                                                                                                                                                                                                                                                                               1.67
                                                                                                                                                                                                                                                                                              70
                                                                                                                                                                                    -167
                                                                                                                                                                                                                         33
                                                                                                                                                                                                                                         H<sub>3</sub>PO<sub>4</sub>
                                                                                                                              I,
S,
P,
                                                                                                                                                                                                                                                              98.00
                                                                                                                                                                                                                                                                               1.69
                                                                                                   -0.14
                                                                                                                                                                                                N<sub>2</sub>O<sub>4</sub>,
SO<sub>2</sub>,
                                                                                                                                                  107
                                                                                                                                                               Br
                                                                                                                                                                                                                                                                                              85
                                                                                                                                                                                                                                                                                                            1
                                                                                                                                                                                   -122
                                                                                                                                                                                                                           9
       Pb** + 2e ≤ Pb
                                                                                                                                                                                                                                         NaOH
                                                                                                                                                                                                                                                              40.00
                                                                                                                                                                                                                                                                               1.53
                                                                                                   -0.126
                                                                                                                                                  279
                                                                                                                                                               I-
                                                                                                                                                                                                                                                                                              50
                                                                                                                                                                                                                                                                                                            1
                                                                                                                                                                                      -55
                                                                                                                                                                                                                       297
      2H· + 2e ≤ H<sub>2</sub>
                                                                                                                                                               S=
                                                                                                                                                                                                                                         NH_3
                                                                                                                                                                                                                                                              17.03
                                                                                                                                                                                                                                                                               0.90
                                                                                                                                                                                               SO<sub>3</sub>,
H<sub>2</sub>S<sub>g</sub>
                                                                                                                                                  315
                                                                                                        0.000
                                                                                                                                                                                       33
                                                                                                                                                                                                                       396
      S_1O_0 = + 2e \Leftrightarrow 2S_2O_3 =
TiO" + 2H' + e \Leftrightarrow Ti" + H<sub>2</sub>O
                                                                                                                                                               SO<sub>4</sub>=
                                                                                                                              Νa<sub>g</sub>
                                                                                                        0.09
                                                                                                                                                  107
                                                                                                                                                                                    909
                                                                                                                                                                                                                                             21. DENSITIES (g cm<sup>-3</sup>)
                                                                                                                              Κç
                                                                                                                                                               CO3=
                                                                                                         0.10
                                                                                                                                                    88
                                                                                                                                                                                    -677
                                                                                                                                                                                                NaF.
                                                                                                                                                                                                                      574
                                                                                                                                                                                                                                                                   Air (70 cm) 0.0(
                                                                                                                                                              HF,
HC1,
                                                                                                                                                                                                                                       Water at
      S + 2H^+ + 2e \Leftrightarrow H_2S
                                                                                                                             Na+,
                                                                                                                                                  609
                                                                                                         0.14
                                                                                                                                                                                    -271
                                                                                                                                                                                                NaC1,
                                                                                                                            \mathbf{\hat{K}^{+}}_{g}
                                                                                                                                                                                                                                    0,°C 0.9168
      Sn^{4} + 2e \leftrightharpoons Sn^{4}
                                                                                                                                                                                                                                                                    Glass
                                                                                                                                                                                                KF.
                                                                                                                                                                                                                                                                                                      2.7
                                                                                                        0.14
U.17
                                                                                                                                                  514
                                                                                                                                                                                 --92
                                                                                                                                                                                                                      -567
      S_1 + 2e \rightleftharpoons S_1

C_1 + e \rightleftharpoons C_1

S_1 = + 4H + 2e \leftrightharpoons H_2O + H_2SO_3

AgCI + e \leftrightharpoons CI + Ag
                                                                                                                                                                                                                                    10°
                                                                                                                                                                                                                                                                    Na<sub>2</sub>CO<sub>3</sub>
                                                                                                                            F-,
C1-,
                                                                                                                                                                                                                                               0.9997
                                                                                                                                                               HBr
                                                                                                                                                  255
                                                                                                                                                                                                                                                                                                       2.5
                                                                                                                                                                                               KCL,
                                                                                                                                                                                      36
                                                                                                                                                                                                                      437
                                                                                                                                                                                                                                    20°
                                                                                                                                                                                                                                                0.9982
                                                                                                                                                                                                                                                                    NaČl
                                                                                                                                                                                                                                                                                                      2.2
                                                                                                                                                              HI,
HCN,
                                                                                                        0.17
                                                                                                                                                  233
                                                                                                                                                                                                AgC1, -127
                                                                                                                                                                                      26
                                                                                                                                                                                                                                    22°
                                                                                                                                                                                                                                                                   BaSO,
                                                                                                                                                                                                                                                0.9978
                                                                                                                                                                                                                                                                                                      4.5
                                                                                                                             CH<sub>4</sub>,
C<sub>2</sub>H<sub>2</sub>,
                                                                                                       0.222
                                                                                                                                                 -75
                                                                                                                                                                                              AgBr. —100
PC1<sub>3</sub>, —287
                                                                                                                                                                                    135
                                                                                                                                                                                                                                    24°
       Saturated calomel
                                                                                                                                                                                                                                                 0.9973
                                                                                                                                                                                                                                                                     AgCl
                                                                                                                                                                                                                                                                                                      5.6
                                                                                                    (0.244)
                                                                                                                                                 227
                                                                                                                                                               PH3,
                                                                                                                                                                                        5
      Hg_2Cl_2 + 2e \iff 2Cl^- + 2Hg
Bi^{***} + 3e \iff Bi
UO_2^{**} + 4H^{**} + 2e \iff U^{*4} + 2H_2O
VO^{**} + 2H^{**} + e \iff V^{***} + H_2O
                                                                                                                                                                                                                                    26°
                                                                                                                                                                                                                                                 0.9968
                                                                                                                                                                                                                                                                    Aluminum
                                                                                                                                                                                                                                                                                                      2.7
                                                                                                                                                                                             PC15,
                                                                                                                              C_2H_{4g}
                                                                                                        0.268
                                                                                                                                                    52
                                                                                                                                                               C6He1
                                                                                                                                                                                                                     -375
                                                                                                                                                                                      49
                                                                                                                                                                                                                                    280
                                                                                                                                                                                                                                                 0.9963
                                                                                                                                                                                                                                                                    Iron
                                                                                                                                                                                                                                                                                                      7.9
                                                                                                        0.293
                                                                                                                                           C<sub>2</sub>H<sub>6</sub>,
                                                                                                                                                                                       CH3OH1 -
                                                                                                                                                                                                                                    30°
                                                                                                                                                                   ---85
                                                                                                                                                                                                                     -238
                                                                                                                                                                                                                                                                    Brass
                                                                                                                                                                                                                                                0.9956
                                                                                                                                        C<sub>3</sub>H<sub>8</sub>, —105
nC<sub>4</sub>H<sub>10</sub>, —127
nC<sub>8</sub>H<sub>18</sub>, —209
—135
                                                                                                                                                                                                                                                                                                      8.4
                                                                                                                                                                                      C<sub>2</sub>H<sub>5</sub>OH<sub>4</sub> -
C<sub>2</sub>H<sub>5</sub>OH<sub>4</sub> -
COC1<sub>2</sub>, -
                                                                                                                                                                                                                                    90°
                                                                                                        0.33
                                                                                                                                                                                                                      235
                                                                                                                                                                                                                                                                    Mercury
                                                                                                                                                                                                                                                 0.9653
                                                                                                                                                                                                                                                                                                    13.6
                                                                                                        0.34
                                                                                                                                                                                                                     278
                                                                                                                                                                                                                                    100,° 0.0006
                                                                                                                                                                                                                                                                   Platinum
      Cu<sup>++</sup> + 2e ← Cu
                                                                                                                                                                                                                                                                                                    21.4
      Fe(CN)_6^{-3} + e \Leftrightarrow Fe(CN)_6^{-4}
                                                                                                                                                                                                                     -219
                                                                                                                                          CC141
                                                                                                        0.355
                                                                                                                                                                                                                                    22. MOBILITIES (m^2V^{-1}s^{-1} \times 1
                                                                                                                                                                                      CH<sub>3</sub>C1,
                                                                                                                                                                      -135
                                                                                                                                                                                                                  <del>---8</del>1
                + e == Cu
                                                                                                        0.52
      I_3^- + 2e \rightleftarrows 3I^-

H_3AsO_4 + 2H^* + 2e \rightleftarrows H_3AsO_3 + H_2O
                                                                                                                                               17. ABS. ENTROPY S°
                                                                                                                                                                                                                                    T.i+
                                                                                                                                                                                                                                                  39
                                                                                                                                                                                                                                                             H_3O
                                                                                                                                                                                                                                                                              350 ½Ba<sup>++</sup>
73 ½La<sup>+3</sup>
                                                                                                       0.545
                                                                                                                                                                                                                                   Na+
                                                                                                                                                                                                                                                             NH4+
                                                                                                                                                      J mol-1 K-1 at 25°C
P4 wh 164 SF
                                                                                                                                                                                                                                                  50
                                                                                                       0.56
                                                                                                                            H_{2g}
                                                                                                                                                           P<sub>4</sub>wh
HF,
HC1,
                                                                                                                                                                                            SF<sub>a</sub>,
                                                                                                                                                                                                                                                  74
                                                                                                                                                                                                                                                                                            1SO<sub>4</sub>=
                                                                                                                                                                                                                                   K+
                                                                                                                                                                                                                                                                                 62
                                                                                                                                              131
                                                                                                                                                                                                                                                              Agt
       I_2 + 2e \rightleftharpoons 2I
                                                                                                                                                                                                               292
                                                                                                       0.621
     2HgCl_2 + 2e \rightleftharpoons Hg_2Cl_2 + 2Cl
O_2 + 2H + 2e \rightleftharpoons H_2O_2
Quinone + 2H + 2e \rightleftharpoons Hydroquinone
                                                                                                                                                                                                                                   C1r
                                                                                                                            N_{2g}
                                                                                                                                                                                                                                                  76
                                                                                                                                                                                                                                                              OH-
                                                                                                                                              192
                                                                                                                                                                                                                                                                              198
                                                                                                                                                                                                               211
                                                                                                       0.63
                                                                                                                            O<sub>2</sub>,
Cl<sub>2</sub>,
                                                                                                                                              205
                                                                                                                                                                                            NO<sub>2</sub>,
N<sub>2</sub>O<sub>4</sub>,
                                                                                                                                                                                                                                   Br
                                                                                                                                                                                                                                                  78
                                                                                                                                                                              187
                                                                                                                                                                                                                240
                                                                                                                                                                                                                                                                                 77
                                                                                                                                                                                                                                                                                           NO_3
                                                                                                       0.69
                                                                                                                                             223
                                                                                                                                                           H_2O_g
                                                                                                                                                                             189
                                                                                                                                                                                                                                          23. WATER V.P. (torr)
                                                                                                       0.70
                                                                                                                            F_{2g}
                                                                                                                                             203
                                                                                                                                                                                            NH_{3g}
     Fe''' + e ⇌ Fe''
Hg<sub>2</sub>'' + 2e ⇌ 2Hg
                                                                                                                                                                             198
                                                                                                                                                                                                               192
                                                                                                       0.771
                                                                                                                                                            CO<sub>2</sub>,
                                                                                                                                                                                                                                       0°C
                                                                                                                          Cb
Sgr
CH<sub>4</sub>, lo
C<sub>2</sub>H<sub>6</sub>,
                                                                                                                             Cgra
                                                                                                                                              5.7
                                                                                                                                                                                                                                                            4.6
                                                                                                                                                                                                                                                                                          25°
                                                                                                                                                                                            PC1<sub>3,</sub>
                                                                                                                                                                             214
                                                                                                                                                                                                               312
                                                                                                       0.792
                                                                                                                                                           ŠO<sub>2</sub>,
                                                                                                                                                                                                                                    15°
      Ag⁺ + e ⇐ Ag
                                                                                                                                                                                            PC15,
                                                                                                                                                                                                                                                          12.8
                                                                                                                                                                                                                                                                                           30°
                                                                                                                                                                              248
                                                                                                                                                                                                               365
     Hg^{**} + 2e \Leftrightarrow Hg

2Hg^{**} + 2e \Leftrightarrow Hg_{2}^{**}
                                                                                                       0.799
                                                                                                                                                                                            \mathbf{BF_{3g}}
                                                                                                                                                                                                                                                          17.5
                                                                                                                                                                                                                                                                                          50°
                                                                                                                                                           SO<sub>3</sub>,
                                                                                                                                                                             256
                                                                                                                                                                                                               254
                                                                                                       0.851
                                                                                                                                                                             CH<sub>3</sub>OH,
                                                                                                                                                                                                              127
                                                                                                       0.907
                                                                                                                                     C<sub>3</sub>H<sub>8</sub>,
C<sub>2</sub>H<sub>2</sub>,
C<sub>2</sub>H<sub>4</sub>,
                                                                                                                                                                            C<sub>2</sub>H<sub>5</sub>OH,
C<sub>2</sub>H<sub>5</sub>OH,
(CH<sub>3</sub>)<sub>2</sub>O,
CH<sub>3</sub>COOH,
                                                                                                                                                                                                                                               24. BUSCELLANEOUS
     10^{-1} + 2e = 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} + 10^{-1} +
                                                                                                                                                             270
                                                                                                                                                                                                               283
                                                                                                                                                                                                                                    Sid. dev. = \sqrt{2} (X_1 - X_1)^3/(n-1)

Conf. limits = \overline{X} \pm t_3 / \gamma_1

E = E^3 - (0.0592/n) \log([Red]/[Ox])

\log I_a, I_a = abc = A = \log 1/T

\log N_T = \log N_{11} - 0.301T/T_1

x = (-b \pm \sqrt{b^2 - 4ac})/2a

n\lambda = 2d \sin \theta

2.303 \log_{10} a = \log_a a

h = 6.626 \times 10^{-34} \text{ J s}

e = 1.602 \times 10^{-19} \text{ C}

N_A = 6.022 \times 10^{-19} \text{ C}

N_A = 6.027 \times 10^{-19} \text{ C}

g = 9.807 \text{ m s}^{-2}
                                                                                                       0.94
                                                                                                                                                             201
                                                                                                                                                                                                              161
                                                                                                       0.98
                                                                                                                                                              219
                                                                                                                                                                                                               266
                                                                                                       0.999
                                                                                                                                     C<sub>6</sub>H<sub>6,0</sub>
                                                                                                                                                             269
     Br_0 + 2e \rightleftharpoons 2Br
                                                                                                       1.08
2IO_3^- + 12H_1^+ + 10e \leftrightharpoons 6H_2O + I_2

A_1^+O_2^- + 4H_1^+ + 4e \leftrightharpoons 2H_2O

A_1^+MO_2^- + 4H_1^+ + 2e \leftrightharpoons Mn^{++} + 2H_2O

Cr_2O_7^- = + 14H_1^+ + 6e \leftrightharpoons 7H_2O + 2Cr^{+++}
                                                                                                                                           18. △G° FORMATION
                                                                                                       1.19
                                                                                                       1.229
                                                                                                                                                        kJ mol-1 at 25°C
                                                                                                       1.23
                                                                                                                                                          HF,
HC1,
                                                                                                                                                                           -273 H<sub>2</sub>O<sub>g</sub>
                                                                                                                                             203
                                                                                                                           F,
C1,
O,
NO,
                                                                                                                                                                                                                   229
                                                                                                       1.33
                                                                                                                                               62
                                                                                                                                                                              -95 H<sub>2</sub>O<sub>1</sub> -
                                                                                                                                                                                                                  -237
      Cl_2 + 2e \rightleftharpoons 2Cl
                                                                                                       1.358
                                                                                                                                             106
                                                                                                                                                           HBr,
                                                                                                                                                                                    54 SÕ<sub>2g</sub>
     2BrO_3^- + 12H^{\bullet} + 10e \leftrightharpoons 6H_2O + Br_2

MnO_4^- + 8H^{\bullet} + 5e \leftrightharpoons 4H_2O + Mn^{\bullet \bullet}

Ce^{\bullet \bullet} + e \leftrightharpoons Ce^{\bullet \circ}
                                                                                                                                                                                                                   -300
                                                                                                       1.50
                                                                                                                                                           HI,
NH<sub>3</sub>,
                                                                                                                                             232
                                                                                                                                                                                  1.7 SO3,
                                                                                                                                                                                                                   371
                                                                                                                                                                           -16 PC1<sub>3</sub>,
-137 PC1<sub>5</sub>,
                                                                                                       1.51
                                                                                                                                               87
                                                                                                                                                                                                                                     g = 9.807 \text{ m s}^{-2}
                                                                                                                           NO<sub>2</sub>, 51
N<sub>2</sub>O<sub>4</sub>, 98
C<sub>2</sub>H<sub>4</sub>, 68.
                                                                                                                                                                                                                                    g = 9.507 m s<sup>-1</sup>

c = 2.998 × 10<sup>8</sup> m s<sup>-1</sup>

l amu = 1.661 × 10<sup>-27</sup> kg

R = 1.987 cals mol<sup>-1</sup> K<sup>-1</sup>

= 0.08206 litre atm mol<sup>-1</sup> K<sup>-1</sup>
                                                                                                                                                           co,
                                                                                                       1.61
                                                                                                                                                                                                                  -305
        13. MEAN ACTIVITY COEFFICIENTS
                                                                                                                                                                                 394 CH<sub>4,</sub>
                                                                                                                                                            CO_{2g}
                                                                                                                                                                                                                ---51
                                                                                                                                                                                 209 C<sub>2</sub>H<sub>0</sub>,
                                                                                                                                                            C_2H_{2g}
                   M
                                         KCI
                                                        Na_2SO_4
                                                                                       ZnSO<sub>4</sub>
                                                                                                                                                                                                                    _33
                                                                                                                              C<sub>6</sub>H<sub>6</sub>1
CC1<sub>4</sub>1
                0.001
                                                                                                                                                               125
                                                                                                                                                                              CH<sub>3</sub>OH<sub>1</sub>
                                                                                                                                                                                                                  -162
                                         0.965
                                                                                                                                                                                                                                    = 8.314 L mol<sup>-1</sup> K<sup>-1</sup>
= 8.314 kPa dm<sup>3</sup> mol<sup>-1</sup> K<sup>-1</sup>
O °C = 273.15 K
                                                                   0.89
                                                                                         .0.70
                0.01
                                                                                                                                                                 -65
                                                                                                                                                                              C<sub>2</sub>H<sub>5</sub>OH<sub>1</sub>
CHCl<sub>3</sub>,
                                         0.901
                                                                                                                                                                                                              ---175
                                                                  0.72
                                                                                           0.39
                                                                                                                              BF<sub>3</sub>,
                                                                                                                                                            1120
                0.1
                                                                   0.45
                                                                                           0.15
                                                                                                                                                                                                                                    1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}

1 \text{ cal} = 4.1840 \text{ J}
                                                                                                                             SFog
                                                                                                                                                       --1105
                                                                                                                                                                              CH3COOH,
```

```
1. PERIODIC CHART OF THE ELEMENTS
                                                                                                                                                                                                                                                                                                           4. NET STABILIT
                                                                                                                                                                                                                                                                                He
                                                                                                                            1.0079
                                                                                                                                                                                                                                                                                                                     CONSTANTS
                                                                                                                                                                                                                                                                                                        Ag(CN)2-
             14
                          2A
                                                                                                                                                                                                                      4À
                                                                                                                                                                                                                                      5A
                                                                                                                                                                                                                                                     6A
                                                                                                                                                                                                                                                                     7A
                                                                                                                                                                                                                                                                                                                                                   5 \times 10
                                                                                                                                                                                                                                                                                                       Ag(NH_3)_2^+ 1.6 \times 10
                           4
                                                                                                                                                                                                                      ĉ
                                                                                                                                                                                                                                                       8
                                                                                                                                                                                                                                                                       0
                                                                                                                                                                                                                                                                                    10
                        Вe
                                                                                                                                                                                                                                     N
                                                                                                                                                                                                      B
                                                                                                                                                                                                                                                     Ó
                                                                                                                                                                                                                                                                                                         Ag(S_2O_3)_2^{-3} 4.7 \times 10
                                                                                                                                                                                                                                                                     F
                                                                                                                                                                                                                                                                                  Ne
                                                                                                                                                                                                                                                                                                        AI(OH)
                                                                                                                                                                                                                                                                                                                                            1.0 \times 10
                                                                                                                                                                                                                                                                    17
                                                                                                                                                                                                                                                                                    18
                                                                                                                                                                                                                                                                                                        Ca(EDTA) = 1.0 \times 10
                                                                                         6
68
                                                                                                        7
78
                                                                                                                                                      10
                                                                                                                                                                                    12
2B
                                                                                                                                                                                                                                                                                                       Cd(CN)_4 = 8.3 \times 10

Cd(NH_3)_4 5.5 × 10
                                                                                                                                                                      11
                                                                                                                                                                                                                     Si
                                                                                                                                                                                                                                                      Ŝ
                                          3
3B
                                                         4
4B
                                                                                                                                                                                                                                                                                   Ar
                                                                                                                                                                                                                                                                    CI
                                                                                                                                        88
                                                                                                                                                                        18
                        20
Ce
                                                                                                                                                                    Ĉu
                                                                                                                                                                                                                                                                                                        Co(NH<sub>3</sub>)<sub>6</sub>+3
Cr(OH)<sub>4</sub>-
                                                                                                                                                                                      30
                                                                                                                                                                                                      31
                                                                                                                                                                                                                      32
                                                                                                                                                                                                                                                                                   36
                                                                                                                                                                                                                                    Ās
                                                                                                                                                                                                                                                                                                                                                   2 \times 10
                                                                                                                                      Co
                                                                                                                                                      Ni
                                                                                                                                                                                    Zn
                                                                                                                                                                                                    Ga
                                                                                                                                                                                                                   Ge
                                                                                                                                                                                                                                                   Se
                                                                                                                                                                                                                                                                   Br
                                                                                                                                                                                                                                                                                  Kr
                                                                                                                                                                                                                                                                                                                                                    4 \times 10
                                                                                                                                                                                                                                                                                                      Cu(CN)<sub>4</sub>-3
Cu(NH<sub>3</sub>)<sub>4</sub>++
Fe(CN)<sub>6</sub>-3
Fe(CN)<sub>6</sub>-4
Fe(SCN)++
                                                                                                                                                                                                                                                                                                                                                     1 × 10
                                                                          41
                                                                                                                                                                                                      49
                                                                                                                                                                                                                                                                                  54
Xe
131.29
                                                                                                                                                                                                                                                                     53
                                                        Zr
                                                                                                                                                                                                                                                                                                                                               1.2 × 16
         Rb
                        Sr
                                                                       Nb
                                                                                                                      Ru
                                                                                                                                      Rh
                                                                                                                                                                    Ag
                                                                                                        Tc
                                                                                                                                                                                                                    Sn
                                                                                                                                                                                                                                    Sb
                                                                                                                                                                                                                                                   Te
                                                                                                                                                                                                                                                                      4.0 \times 10
2.5 \times 10
           55
                                                                                                                      %
Os
                           56
                                          57
                                                                                                                                                                                                    TI
                                                                                                                                                                                                                                                                                   86
         C5
                        Ba
                                                                                                      Ŕе
                                                       Hf
                                                                                                                                                                                                                                                                                                                                               1.0 \times 10
                                         La
                                                                        Ta
                                                                                                                                       lr
                                                                                                                                                                                                                                                  Po
                                                                                                                                                                                                                                                                   At
                                                                                                                                                                                   Hg
                                                                                                                                                                                                                    РЬ
                                                                                                                                                                                                                                    Bi
                                                                                                                                                                                                                                                                                  Ŕn
                                                                                                                                                                                                                                                                                                       HgC1_4 = 1.3 \times 10

Hg(CN)_4 = 8.3 \times 10

Hg(SCN)_4 = 5.0 \times 10
                                                                                                       107
                                                                                                                                                      A value in brackets denotes the mass number of
                        Ra
                                        Aε
                                                                                                                                                                                                                                                                                                      Hg(SCLV)_{2}
HgI_{4} = 6.3 \times 11
Mg(EDTA) = 1.3 \times 11
NI(NH_{3})_{4} + 4.7 \times 11
NI(NH_{3})_{4} - 7.9 \times 11
                                                                       Unp
                                                        Unq
                                                                                       Unh
                                                                                                      Uns
                                                                                                                     Uno
                                                                                                                                     Une
                                                                                                                                                      the longest lived or best known isotope.
                                                                             60 61 62 63 64 65 66 67 68 Nd Pm Sm Eu Gd Tb Dy Ho Er
           🛨 Lanthenide
                                               Ce
                                                                                                                                                                                                                        Tm
                                                                                                                                                                                                                                           Yb
                                                                                                                                                                                                                                                          Lu
                                                                                                                                                                                                                                                                                                      Pb(OH)<sub>3</sub>-
Zn(CN)<sub>4</sub>=
Zn(NH<sub>3</sub>)<sub>4</sub>+
                 series
                                                                                           NP Pu Am Cm Bk
                                                                                                                                                                                                                                                                                                                                              4.2 × 10
                                                                                                                                                                                                           100 101 102
Fm Md No
(257) (259)
                                                                                                                                                                                                                                                           103
                 Actinide
                                                                                                                                                                                                                                                                                                                                              7.8 \times 10
                                                                                                                                                                                            Es
                                                                                                                                                                                                                                                                                                       Zn(OH)_4=
                    2 IONIZATION CONSTANTS
                                                                                                                 (KA) FOR WEAK ACIDS
                                                                                                                                                                                                                               5. FIRST IONIZATION ENERGIES, e.v.
                                                                                                                                                            3.7 × 10-8

K<sub>1</sub> 9 × 10-8

K<sub>2</sub> 1 × 10-15

on 1.1 × 10-7

1.4 × 10-4
                                                                                                                   Hypochlorous
H<sub>2</sub>S
       Acetic
                                                           1.9 \times 10^{-5}
                                                                                                                                                                                                                                                                                   14
      2-Amino-
                                                         ^2 \times ^{10^{-7}}_{5.6} \times ^{10^{-10}}
                                                                                                                                                                                                                     5,4 9,3
                                                                                                                                                                                                                                                                                                                         8.3 11 15 14 17
            pyridinium Ion 2
                                                         2.3 × 10<sup>-10</sup>
2.3 × 10<sup>-5</sup>
5.6 × 10<sup>-3</sup>
6.7 × 10<sup>-5</sup>
5 × 10<sup>-10</sup>
4.3 × 10<sup>-7</sup>
5.6 × 10<sup>-11</sup>
1.5 × 10<sup>-8</sup>
3.2 × 10<sup>-7</sup>
1.7 × 10<sup>-4</sup>
8 × 10<sup>-5</sup>
× 10<sup>-2</sup>
× 10<sup>-2</sup>
× 10<sup>-3</sup>
× 10<sup>-11</sup>
× 10<sup>-13</sup>
× 10<sup>-10</sup>
× 10<sup>-3</sup>
× 10<sup>-10</sup>
× 10<sup>-3</sup>
× 10<sup>-10</sup>
                                                                                                                    Imidazolium Ion
       Ammonium Ion
                                                                                                                                                                                                                     51 7.6
                                                                                                                                                                                                                                                                                                                   28 6.0 8.1 11 10 13
                                                                                                                                                                                                                     actic
       Anilinium Ion
                                                                                                                    Methylammonium
       Arsenic
                                               K, 5.6
                                                                                                                                                                                                                     42 57 66 7.0 68 7.2
                                                                                                                                                                                                                                                                          7.5 7.7 8.3 7.6 9.0 5.8 7.3 8.6 9.0 10
                                                                                                                                                                         2.7 \times 10^{-11}
                                                                                                                         Ion
     Benzoic
                                                                                                                                                                                                                     39 52 50 55 6 80 79 87 92 90 92 10 61 74 8
                                                                                                                                                                       3 × 10<sup>-10</sup>
9.6 × 10<sup>-2</sup>
6 × 10<sup>-2</sup>
6 × 10<sup>-3</sup>
1.3 × 10<sup>-10</sup>
4 × 10<sup>-8</sup>
7.5 × 10<sup>-8</sup>
4.7 × 10<sup>-13</sup>
1.0 × 10<sup>-2</sup>
2.6 × 10<sup>-7</sup>
1 × 10<sup>-5</sup>
7 × 10<sup>-5</sup>
1.2 × 10<sup>-2</sup>
2 × 10<sup>-2</sup>
6 × 10<sup>-8</sup>
                                                                                                                   Monoethanol-
                                                                                                                   ammonium Ion
Oxalic K1
K2
      Boric
                                               K<sub>1</sub> 5
                                               K,
                                                                                                                                                                                                                                 6. ELECTRONEGATIVITIES, Pauling
       Carbonic
                                                K2
                                               1.5
K<sub>2</sub> 3.2
                                                                                                                                                                                                                                                                                  2.1
      Chloroacetic
                                                                                                                                                                                                                    10 1.5
       Chromic
                                                                                                                                                                                                                                                                                                                         2.0 2.5 3.0 3.5 4.0
                                              K,
                                                         8.7
1.8
4
5
                                                                                                                   Phenol
                                                                                                                                                                                                                     0.9 1.2 38
      Citric
                                                                                                                                                                                                                                                                                                                   28 L5 L8 21 25 3.0
                                                                                                                                                             K2
                                                                                                                    Phthalic
                                                                                                                                                                                                                    0.8 10 13 15 16 16 15 18 18 18 19 16 18 18 2.0 24 28
                                                                                                                                                             K<sub>1</sub>
                                                                                                                    Phosphoric
                                                \mathbf{K}_{8}^{-}
                                                                                                                                                                                                                    0.8 1.0 1.2 1.4 1.6 1.8 1.9 2.2 2.2 2.2 1.9 1.7 1.7 1.8 1.9 2.1 2.5
                                                                                                                                                             K<sub>2</sub> 6.2
K<sub>3</sub> 4.7
K<sub>1</sub> 1.0
K<sub>2</sub> 2.6
      Dichloroacetic
                                                                                                                                                                                                                    0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.2 2.2 2.4 1.9 1.8 1.8 1.9 2.0 2.2
      EDTA
                                               K,
                                              K<sub>2</sub>
K<sub>3</sub>
                                                                                                                   Phosphorous
                                                                                                                                                                                                                                                  7. ATOMIC RADII picometers
                                                                                                                    Pyridinium Ion
                                                                                                                                                                                                                                                                          37
                                                                                                                                                             K_1
                                                                                                                    Succinic
     Formic
                                                                                                                                                             K<sub>2</sub> 2.5
K<sub>2</sub> 1.2
K<sub>1</sub> 2
                                                                                                                                                                                                                 155 112
                                                                                                                                                                                                                                                                                                                     98 91 92 73 71
           D(+)-Glucose
                                                                                                                                                                                                                                                                                                             28 143 132 128 127 98
                                                                                                                    Sulfuric
                                                                                                                                                                                                                                                                                                      1B
      Glycinium Ion K<sub>1</sub>
                                                                                                                                                                                                                  235 197 162 147 134 130 135 126 125 124 128 138 141 137 139 140 114
                                                                                                                    Sulfurous
                                              K.
                                                                                                                                                                                                                  248 215 178 160 146 139 136 134 134 137 144 154 166 162 159 160 133
     Hydrazinium Ion
                                                                                                                                                                                                                  287 222 187 167 149 141 137 135 136 139 146 157 171 175 170 176
                                                                                                                    Trimethyl-
    Hydrocyanic
Hydrofluoric
                                                                    × 10<sup>-18</sup>
× 10<sup>-4</sup>
                                                                                                                         ammonium Ion 1.6 \times 10^{-10} ric 1.3 \times 10^{-4}
                                                                                                                                                                                                                             8. IONIC RADII pm
                                                                                                                                                                                                                                                                                                            9. LATTICE ENERGIE
                                                                                                                    Uric
                                                                                                                                                                                                                                   60 Sr<sup>+2</sup> 113
95 Ba<sup>+2</sup> 135
33 B<sup>+3</sup> 20
     Hydroxyl-
                                                                                                                                                                                                                                                              113 S-2
                                                                                                                                                                                                                                                                             S<sup>-2</sup> 184
Se<sup>-2</sup> 198
                                                                                                                                                                                                                                                                                                             (All negative)
                                                                                                                                                                                                                                                                                                                                                      kJ/n
                                                                                                                                                                                                                Na<sup>+</sup>
K<sup>+</sup>
Rb<sup>+</sup>
                                                                                                                    Water, K<sub>▼</sub>, 24°C
           ammonium Ion 9.1 \times 10^{-7}
                                                                                                                                                                        1.0 \times 10^{-14}
                                                                                                                                                                                                                                                                                                           F Cl
Li 1030 840
Na 914 770
K 812 701
Rb 780 682
                                                                                                                                                                                                                                                                                                                                                  \mathbf{Br}
                                                                                                                                                                                                                                                                          Te<sup>-2</sup> 221
F- 136
Cl- 181
                                                                                                                                                                                                                                             Al<sup>+3</sup>
N<sup>+3</sup>
P<sup>+3</sup>
                                                                                                                                                                                                                                                                                                                                                  781
                                      3. SOLUBILITY PRODUCT CONSTANTS
                                                                                                          2 × 10<sup>-8</sup> | KClO<sub>4</sub> | 2 × 10<sup>-2</sup> | 1 × 10<sup>-10</sup> | MgCO<sub>3</sub> | 1 × 10<sup>-5</sup> | 5 × 10<sup>-9</sup> | MgC<sub>2</sub>O<sub>4</sub> | 9 × 10<sup>-5</sup> | 4 × 10<sup>-11</sup> | Mg(OH)<sub>2</sub> | 2 × 10<sup>-14</sup> | Mg(OH)<sub>2</sub> | 1 × 10<sup>-15</sup> | 1 × 10<sup>-28</sup> | Mg(OH)<sub>2</sub> | 1 × 10<sup>-15</sup> | 1 × 10<sup>-28</sup> | Mg(OH)<sub>2</sub> | 2 × 10<sup>-14</sup> | 1 × 10<sup>-15</sup> | 1 × 10<sup>-15</sup>
                                                                                                                                                                                                                                                              50
171
                                                                                                                                                                                                                                148
                                                                                                                                                                                                                                                                                                                                                  728
                                          4 × 10<sup>-13</sup> BaC<sub>2</sub>O<sub>4</sub>
6 × 10<sup>-12</sup> BaSO<sub>4</sub>
1 × 10<sup>-10</sup> CaCO<sub>3</sub>
2 × 10<sup>-12</sup> CaF<sub>2</sub>
4 × 10<sup>-12</sup> CaC<sub>2</sub>O<sub>4</sub>
  AgBr
                                                                                                                                                                                                                Be<sup>+2</sup>
                                                                                                                                                                                                                                   31
                                                                                                                                                                                                                                                                                                                                                   671
 Ag<sub>2</sub>CO<sub>8</sub>
AgCl
                                                                                                                                                                                                                Mg<sup>+2</sup>
Ca<sup>+2</sup>
                                                                                                                                                                                                                                                               212
                                                                                                                                                                                                                                                                            Br-
                                                                                                                                                                                                                                                                                            195
                                                                                                                                                                                                                                                                                                                                                  654 6
613 8
                                                                                                                                                                                                                                                                                                                                                  654
                                                                                                                                                                                                                                              0-2
AgCl

Ag2CrO<sub>4</sub> 2×10<sup>-1</sup>-

Ag[Ag(CN)<sub>2</sub>]4×10<sup>-12</sup>

AgI 1×10<sup>-16</sup>

Ag<sub>2</sub>PO<sub>4</sub> 1×10<sup>-19</sup>

1×10<sup>-50</sup>
                                                                                                                                                                                                                                   99
                                                                                                                                                                                                                                                               140
                                                                                                                                                                                                                                                                            Į۳
                                                                                                                                                                                                                                                                                           216
                                                                                                                                                                                                                                                                                                            Cs
                                                                                                                                                                                                                                                                                                                        744
                                                                                                                                                                                                                                                                                                                                    630
                                                                                                                                                                                                                                                                 10. HALF LIVES
                                                                                                                                                                                                                                 12.3 years K<sup>40</sup> 1.28 × 10<sup>9</sup>y Fis1
                                                                        CdS
Cu(OH)<sub>2</sub>
                                                                                                                                                                                                                Н³
                                                                                                                                                                                                                                                                                                                                              8.1 day
                                                                                                                                                                               2 × 10<sup>-14</sup>
1 × 10<sup>-28</sup>
2 × 10<sup>-8</sup>
                                                                                                                                                                                                                F20
                                                                                                                                                                                                                                                                    Ca<sup>45</sup> 165 days Cs<sup>187</sup> 30 year Fe<sup>59</sup> 45 days Au<sup>198</sup> 2.69 da
                                                                                                           2 × 10-20 PbCrO.
                                                                                                                                                                                                                                 11.4 secs
Ag<sub>2</sub>S
AgCNS
Al(OH)<sub>3</sub>
BaCO<sub>3</sub>
BaCrO<sub>4</sub>
                                          1 × 10<sup>-50</sup> CuS
1 × 10<sup>-12</sup> Fe(OH)<sub>3</sub>
                                                                                                            1 \times 10^{-86}
                                                                                                                                         PhS
                                                                                                                                                                                                                C14
                                                                                                                                                                                                                                5730 years
                                                                                                                                                                                                                                                                    PbSO.
                                                                                                                                                                                                               Na24 15.0 hours
                                                                                                           1 \times 10^{-36}
                                         1 × 10<sup>-2</sup> | Fe(O1.)

2 × 10<sup>-8</sup> | Hg<sub>2</sub>Br<sub>2</sub>

5 × 10<sup>-9</sup> | Hg<sub>2</sub>Cl<sub>2</sub>

1 × 10<sup>-10</sup> | HgS
                                                                                                           3 × 10-28 SrCrO<sub>4</sub> 4 × 10-5
6 × 10-19 Zn (OH)<sub>2</sub> 3.6 × 10-16
                                                                                                                                                                                                               P32
                                                                                                                                                                                                                               14.3 days
                                                                                                                                                                                                                                                                   Sr<sup>90</sup> 28 years
I<sup>129</sup> 1.7 × 10<sup>7</sup>y
                                                                                                                                                                                                                                                                                                                         U238 4.51×10
                                                                                                                                                                                                                S85
                                                                                                                                                                                                                                      88 days
                                                                                                            1 \times 10^{-52} ZnŠ
                                                                                                                                                                                                               Cl^{36} 3.1 × 10^{5}y
                                                                                                                                                                               1 × 10-24
                                                                                                                                                                                                                                                                                                                         Pu<sup>230</sup> 24,400
         © Copyright 1986, W. E. Harris & S. G. Davis
                                                                                                                                                                           University of Alberta, Edmonton
                                                                                                                                                                                                                                                                                                           Printed in Canada
```

Electrode Potenticuls, E° Hthe \neq 1/2 $E^{\circ} = 0.000V$ Ca2++2e \neq Ca(s) $E^{\circ} = -0.246V$ The = -0.023V

au2++20- 2 Cu(s) F=+0.