125

UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION 2005

TITLE OF PAPER: PHYSICAL CHEMISTRY

COURSE NUMBER: C302

TIME:

THREE (3) HOURS

INSTRUCTIONS:

There are six questions. Each question is worth 25 marks. Answer any four questions.

A list of integrals, a data sheet and a periodic table are attached

Non-programmable electronic calculators may be used.

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1(25marks)

- a. Explain why Einstein's introduction of quantization accounted for the heat capacities of metals at low temperatures. [4]
- b. The work function of Pd is 4.98 eV.
 - (i) What is the maximum kinetic energy of photoelectrons ejected from Pd when irradiated with ultraviolet light of 200 nm wavelength?
 - (ii) What is the wavelength associated with the electron traveling at this velocity?
 - (iii) What is the longest wavelength that will initiate the photoelectric effect in Pd. [8]
- c. Calculate the average linear momentum of a particle described by the wavefunction $\psi = e^{5ix}$ [3]
- d. Which of the following functions are eigen functions of $\frac{d^2}{dx^2}$. If a function is an eigen function of this operator, what is the eigen value?
 - (i) $2\cos 3x$ (ii) $3x^2$ (iii) e^{5x^2} [3]
- e. A particle is in a state described by the wavefunction $\psi(x) = (2a)^{1/2} e^{-ax}$, where a is a constant and $0 \le x \le \infty$. Determine the expectation value of the commutator of the position and momentum operators, $\langle [\hat{x}, \hat{p}_x] \rangle$. [7]

Question 2 (25 marks)

- a. Discuss the correspondence principle and illustrate it using two examples. [6]
- b. Consider a particle confined to a one-dimensional box of length L, and whose wavefunction is $\psi = \sqrt{\frac{2}{L}} \sin \frac{n\pi x}{L}$, n = 1, 2, 3, ...
 - (i) What are the most likely locations of the particle when n = 3? [6]
 - (ii) Calculate the probability that the particle will be found between 0.49L and 0.51L when n = 1 and when n = 2. [5]
- c. A two dimensional oscillator has the potential energy

$$V = \frac{1}{2}k(x^2 + y^2)$$

- (i) Write down the expression for the Schrödinger equation for this system. [3]
- (ii) The energy levels of a one dimensional oscillator are $E = (v + \frac{1}{2})hv$, $v=0, 1, 2, \dots$ Use this to write an expression for the energy levels of a two dimensional oscillator. [2]
- (iii) What is the degeneracy of the first four energy levels. [3]

Question 3 (25 marks)

a. One of the excited states of the hydrogen atom is described by the wavefunction

$$\psi = \left(2 - \frac{r}{a_0}\right) e^{-r/2a_0}$$

- (i) Normalize ψ to 1. [6]
- (ii) Evaluate the expectation value of r for the hydrogen atom with the above wavefunction. [7]
- b. Specify and account for the selection rules for transitions in hydrogenic atoms.

 [4]
- c. What atomic terms are possible for the electron configuration ns¹nd¹? Which term is likely to lie lowest in energy? [5]
- d. What values of J may occur in the term ³D. How many states (distinguished by the quantum number M_j) belong to each level? [3]

Question 4 (25 marks)

- a. Distinguish between a bonding and an anti-bonding orbital. [5]
- b. Use molecular orbital theory to explain why the binding energy of N_2^+ is less than that of N_2 whilst that of O_2^+ is greater than that of O_2 . [6]
- c. Explain or define the following terms
 - (i) Fluorescence (ii) phosphorescence (iii) vibronic transition [6]
- d. Why is the intensity of d-d transitions in octahedral complexes much weaker than those in tetrahedral complexes? [4]
- e. Why is the fluorescence spectrum displaced to lower frequencies when compared to the corresponding absorption spectrum? Explain with an appropriate diagram. [4]

Question 5(25 marks)

- a. write down the expression for the rotational energy levels of a diatomic molecule assumed to be rigid. [3]
- b. What is the degeneracy in the above energies? What is the physical interpretation of this degeneracy? [3]
- c. Obtain a general expression for the change in energy of the R-branch in HCl in the lowest vibrational state. [4]
- d. The high temperature microwave spectrum of ³⁹K³⁵Cl vapour shows an absorption at 7687.94 MHz that can be identified with the J=0 to J=1 transition. Calculate the moment of inertia and bond length of KCl. (Atomic masses are ³⁹K: 38.9637 u and ³⁵Cl: 34.9688 u) [15]

Question 6 (25 marks)

- a. The fundamental and first overtone transitions of ¹⁴N¹⁶O are centered at 1876.06 cm⁻¹ and 3724.20 cm⁻¹, respectively. Given that the isotopic masses of ¹⁴N and ¹⁶O are 14.0041 u and 15.9949 u, respectively, calculate
 - (i) The equilibrium vibrational frequency [5]
 - (ii) The anharmonicity constant [3]
 - (iii) The exact zero point energy [3]
 - (iv) The force constant of the molecule [4]
- b. The N_2O molecule has three strong bands in its infrared spectrum at 588.8 cm⁻¹, 1285.0 cm⁻¹, and 2223.5 cm⁻¹. All have been shown to be fundamentals and the molecule has been shown to be linear.
 - (i) Explain why CO₂, which is also linear, has only two fundamental IR bands while N₂O has three.
 [5]
 - (ii) Where would you look for the overtone and combination bands in the IR spectrum of N₂O? [5]

Useful Integrals and relations

$$d\tau = r^2 dr sin\theta d\theta d\varphi$$

$$\int x^n \exp(-ax) dx = \frac{n!}{a^{n+1}} \qquad (a > 0, \text{ n positive integer})$$

$$\int Sinx dx = -\cos x$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}$$

$$\int \sin^2 ax dx = \frac{x}{2} - \frac{1}{4a} \sin 2ax$$

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	c ·	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	,e	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	N _A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	m_e	9.109 39 X 10 ⁻³¹ Kg
proton	m_p	1.672 62 X 10 ⁻²⁷ Kg
neutron	$\mathbf{m}_{\mathbf{n}}$	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{\rm o} = 1/c^2 \mu_{\rm o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε,	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ_{o}	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
		$4\pi \times 10^{-7} \mathrm{T^2 J^{-1} m^3}$
Magneton	,	
Bohr	$\mu_{\rm B} = e\hbar/2m_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_N = e\hbar/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	<i>ge</i>	2.002 32
Bohr radius	$a_o = 4\pi \varepsilon_o \hbar/m_e e^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_o e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{-} = m_e e^4 / 8h^3 c \epsilon_o^2$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV =		•	oules (J 2 X 10 ⁻¹	•	1 erg 1 eV/n	nolecule		=	1 X 10 ⁻⁷ J 96 485 kJ mol ⁻¹					
Prefixe	es	femto	p pico 10 ⁻¹²		micro	milli	centi	deci	kilo	M mega 10 ⁶	G giga 10°			

PERIODIC TABLE OF ELEMENTS

	18	VIIIV	4.00.3	IIc	2	20.180	- Ne	01	39.948	۸r	<u>~</u>	83.80	Ϋ́	36	131.29	Xc	54	(222)	Rn	98			
	17	VIIA				18.998	드		3	ご	17	79.904	Br	35	126.90	_	53	(210)	At	85			
	16	۸I۸				15.999	0	8	32.06	S	91	78.96	Se	34	127.60	Ţc	52	(208)	P_0	84			
	15	۸۷				14.007	z	7	30.974	<u>a</u>	15	74.922	As	33	121.75	$S_{\mathbf{p}}$	51	208.98	Bi	. 83			
	14	IVA				12.011	ບ	9	28.086	Si	14	72.61	ဦ	32	118.71	Sn	20	207.2	Pb	82			
	13	HIIA				10.811	A B	رد ا	26.982	ΨI	13	69.723	ß	31	114.82	In	49	204.38	II	81			
	12	IIB				Atomic mass —	Symbol -	Atomic No.				65.39	Zn	30	112.41	Cq	48	200.59	Hg	80	-		
	11	113				Atomi	Syn	Atom				63.546	Cn	29	107.87	Ag	47	196.97	Au	79			
	10											58.69	ï	28	106.42	Ъď	46	195.08	Pt	78	(267)	Uun	110
GROUPS	6	VIIIB								ENTS		58.933	ပိ	27	102.91	Rh	45	192.22	Ir	11	(266)	Une	109
G	8									N ELEMENTS		55.847	Fe	26	101.07	Ru	44	190.2	Os	76	(265)	Uno	108
	7	VIIB								TRANSITION		54.938	Mn	25	706.86	Tc	43	186.21	Re	75	(262)	Uns	107
	9	VIB								TRAN		51.996	ڻ	24	95.94	Mo	42	183.85	*	74	(263)	Unh	106
	5	VB										50.942	>	23	92.906	Νβ	41	180.95	Та	73	(262)	На	105
	4	IVB										47.88	Ţ	22	91.224	Zr	40	178.49	JH	72	(261)	Rf	104
	3	E										44.956	Sc	- 21	88.906	>	39	138.91	*La	57	(227)	**Ac	86
	2	≦				9.012	Be	4	24.305	Mg	12	40.078	ర	20	87.62	Sr.	38	137.33	Ва	26	226.03	Ra	88
		≤	1.008	=	_	6.941	ב	3	22.990	Z Z	=	39.098	×	19	85.468	Rb	37	132.91	ర	55	223	Fr	87
		PERIODS		_	•		7	l		"			4			3			9			7	

				-life	Had Isagno	-	the isotone with the	The isol	o Joquin	u ssbin a	indicates the	() ind	
,103	102	101	100	66	86	26	96	95	94	93	26	16	06
ŗ	Š	Md	Fm	Es	Ç	ВК	Cm	Αm	Pu	Np	n	Га	Ti
(260)	(259)	(258)	(257)	(252)	(251)	(247)	(247)	(243)	(244)	237.05	238.03	232.04 231.04	232.04
71	70	69	89	<i>L</i> 9 ·	99	. 65	64	63	62	19	09	59	28
Lu	Λp	Tm	Er	Ho	Dy	$^{\mathrm{Tp}}$	Вd	Eu	Sm	Pm	PN	Pr	స
174.97	173.04	168.93	167.26	164.93	162.50	158.93	157.25	151.96	150.36	(145)	144.24	2 140.91 144.2	140.12

*Lanthanide Series

**'Actinide Series