UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2005

TITLE OF PAPER:

GENERAL CHEMISTRY

COURSE NUMBER:

C101

TIME:

THREE (3) HOURS

INSTRUCTIONS:

There are six (6) questions each worth 25 marks.

Answer any four (4) questions.

A data sheet and periodic table are attached. Non-programmable calculators may be used.

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

- (a) A natural sample of bromine consists of 50.54% ⁷⁹Br (mass 78.918 amu) and 49.46% ⁸¹Br (mass 80.916 amu).
 - (i) What is an isotope?

[1]

(ii) Calculate the average molar mass of bromine from the above data.

[2]

(iii) Give the electronic configuration of the bromine atom.

[2]

(b) Calculate the enthalpy change of the reaction

$$2C(s) + H_2(g) \rightarrow C_2H_2(g)$$

From the following data

$$2C_2H_2(g) + 5O_2(g) \rightarrow 4CO_2(g) + 2H_2O(g)(l)$$

$$\Delta H^{O} = -2600 kJ$$

$$C(s) + O_2(g) \rightarrow CO_2(g)$$

$$\Delta H^{\circ} = -393kJ$$

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$$

$$\Delta H^{\circ} = -483.6 kJ$$

$$H_2O(l) \rightarrow H_2O(g)$$

$$\Delta H^o = +44kJ$$

[3]

- (c) Write thermochemical equations to show:
 - (i) the standard enthalpy of formation of ammonium chloride is -31.3kJ mol⁻¹. [2]
 - (ii) the standard enthalpy of sublimation of iodine is -49 J mol⁻¹.

[1]

- (iii) when 0.51 g methanol, CH₃OH, burns in excess oxygen it gives off 5840.6 Joules of heat. [2]
- (d) Describe briefly how you would test for the presence of each of the following elements in an organic compound.
 - (i) carbon
- (ii) nitrogen
- (iii) sulphur

- (iv) chlorine
- (v) hydrogen
- (vi) phosphorus [12]

- (a) Give four reasons why carbon forms large number of compounds. [6]
- (b) (i) Name any six types of organic reactions.
 - (ii) Describe each of the reactions named above and write an equation to illustrate.

[12]

(c) There are three unlabelled gas cylinders in a laboratory. One contains ethane, another one contains ethane while the third one contains ethyne. Describe briefly experiments you would perform to identify and label the cylinders. [7]

Question 3

- (a) There are three different definations of acids that we used: Arrhenius, Brønsted and the Lewis definition. Briefly distinguish between these. [4]
- (b) Hydrochloric acid, HCl, is a strong acid whereas hydrocyanic acid, HCN, is a weak acid with an ionization constant of 4.0 x 10⁻¹⁰.
 - (i) Briefly distinguish between a strong acid and a concentrated acid. [1]
 - (ii) Calculate the pH of a 0.1 M HCl and the pH of a 0.1 M HCN. [8]
- (c) Suppose we carryout titrations with 25.00 mL of each acid as the analytes. What is the pH of each analyte solution after the addition of 5.00 mL of 0.250 M NaOH as the titrant?

 [12]

- (a) A molecular compound is found to have 60.4% Xe, 22.1% O and 17.5% F by mass. The molecular mass is 217.3 g/mol.
 - (i) Deduce the molecular formula of the compound [4]
 - (ii) What is its Lewis structure? (Xe is the central atom). [3]
 - (iii) Using the VSEPR theory, predict the molecular shape of the compound. [2]
- (b) The following redox reaction occurs in acidic solution.

$$Cu(s) + NO_3^-(aq) \rightarrow Cu^{2+}(aq) + NO(g)$$

- (i) Balance the equation. [3]
- (ii) Name the reducing and the oxidising agent [2]
- (c) Chlorine gas can be prepared by heating sodium chloride, sulphuric acid and manganese (IV) oxide together according to the reaction

$$4NaCl(aq) + 2H_2SO_4(aq) + MnO_2(s) \rightarrow 2Na_2SO_4(aq) + MnCl_2(aq) + 2H_2O(l) + Cl_2(g)$$

In a particular preparation, 10.00g MnO₂ was added to 100.0 mL of 1.71 M NaCl and heated with 20.0 mL of 15.0 M sulphuric acid.

(i) Determine the limiting reagent. [5]

After the reaction, a total of 758 mL of Cl₂ gas at 25.0 °C and 1.20 atmospheres was obtained.

(ii) Calculate the percentage yield for this reaction. [5]

- Consider the gases NH_3 (g), SO_2 (g) and H_2 (g). (a)
 - (i) Classify each one as acidic, basic or neutral.

[11/2]

(ii) Arrange them in increasing order of rate of effusion.

[1½]

(b) Consider the reversible reaction

$$4NH_3(g) + 5O_2(g)$$

$$4NH_3(g) + 5O_2(g)$$
 $4NO(g) + 6H_2O(g)$

Based on Le Chatelier's principle, predict whether each of the following changes would favour the forward or reverse direction. Justify your answer.

- (i) addition of H₂O
- (ii) addition of a catalyst
- a decrease in pressure (achieved by increasing the volume) (iii)

[6]

(c) The equilibrium constant for the water-gas shift reaction has a value of 0.227 at 2000K.

$$CO(g) + H_2O(g)$$
 $CO_2(g) + H_2(g)$

$$CO_2(g) + H_2(g)$$

Supposed 0.0500 mol CO and 0.0500 mol H₂O are placed in a 2.00 L flask. What are the equilibrium concentrations of all the species. [10]

(d) Consider the reaction of sulphur dioxide and oxygen to give sulphur trioxide.

$$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g), \qquad \Delta H^{\circ} = -198kJ$$

Calculate the heat evolved from a reaction mixture of 13.4L of sulphur dioxide at 1.00 atm and 273 K and 14.0g of oxygen. [6]

- (a) A green aqueous solution was labelled "nickel(II) chloride".
 - (i) What ions are present in the solution

[1]

(ii) Write the chemical formulae of the salt dissolved in this solution.

[1]

- (b) Calculate the number of molecules of water, H_2O , present in a cube of ice that measures 5.00 cm on each side. (Assume the density of ice = 0.92 g/cm³ and that of water = 1.00 g/cm³).
- (c) Vinegar is a solution of acetic acid, CH₃COOH in water. In a titration experiment, a student finds that a 5.00 mL sample of vinegar requires 16.96 mL of 0.240 M NaOH solution to reach the end point.

$$CH_3COOH + NaOH \rightarrow CH_3COONa + H_2O$$

(i) Calculate the molar concentration of acetic acid in the vinegar.

[3]

- (ii) Calculate the mass percent of acetic acid in the vinegar, if the density of the vinegar is 1.005 g/cm³. [3]
- (d) Predict whether a reaction will occur in each of the following cases, write a balanced equation for the reaction which occur and their net ionic equations. If no reaction occurs, write an arrow then "NR" after the chemical symbols of the reactants.
 - (i) An aqueous solution of sodium carbonate is added to nitric acid.
 - (ii) An aqueous solution of sodium phosphate is added to an aqueous solution of copper(II) sulphate.
 - (iii) An aqueous solution of silver(I) nitrate and an aqueous solution of sodium carbonate are mixed. [6]

(e)	You are given the following colourless solutions with no labels.											
	(i) sii	lver(I) nitrate	(ii) barium hydroxide	(iii) copper(II) sulphate								
Describe <u>three</u> qualitative tests that will help confirm the identity of each su each test proposed, describe the expected result and write the chemical equattest, where necessary.												
	tost, whole hoodstay.											
(f)	(f) Complete the following											
	(i)	Of the ions Cl, F and	d Br, the ion with the smallest	t radius is								
	(ii)	Of the atoms Ar, K a	nd Ca the atom with the larges	st ionization energy is								
	(iii)	Of the atoms As, Sn a	and S, the atom with the highe	est electronegativity is[3]								

PERIODIC TABLE OF ELEMENTS

		7		,				υı			4				u			2					PERIODS		
·	. 87	Ŀŗ	223	55	<u>က</u>	132.91	37	R.b	85.468	19	: >	39.098	30000	Ξ	Na	22.990	3	Li.	6.941	_	H	1.008	ΙA		•
	88	Ra	226.03	56	5	137.33	38	Sr	87.62	20	Ca	40.078	200	12,	Mg	24.305	4	Be	9.012		•		IIA	2	
	89	**Ac	(777)	57.	* :	10 851	39	×	88.906	21	Sc	44.956											IIIB	ω	
	104	Rf	1190	75	111	178 40	40	Zr	91.224	22	7;	47.88								•		-	IVB	4	
	105	Ha	(363)	71.	T. 2	180 08	4	<u>Z</u>	92,906	23	<	50.942		-									УΒ	5 .	
	106	Unh	(2)	7.4	187.02	20 00	42	Mo.	95.94	· 24	Ç	51.996		NIWALL	אוע ל מער			. •			-	,	۷IB	6	
	107.	Uns		3.6	180.24			T .		25	Mn	54.938.		CLAMBITION ELEMENTS	NOTIFIED IN						•		VIII	7	•
	108.	(265) Uno	3 6	?	3,5		44	₽		26		55.847		FINELLE	ייני מיני	•						.			3
		(266) Une	╀			+-	_	102.71	-	27		58.933		ENIS			-		-	•	. -	11115	VIII	GKOOKS	
	110	(267) 	78	Pt	195.08	.40		75.40	201	2	_					-							5	5	
		٠	<u> </u>			╄		107.87	+	၌ (<u></u>		63.546				;	Atomic No.	Cum.)	Alomic mass			Ī	∃	-	
	-		,		200.59	╀		112.41	+-	3 6		06.59				_	1.1	1 2	mase L			IIB	12 :-	5	
		ļ	<u>8</u>	1	204.38	3	111	114.82	<u>u</u>	3 G	2.75	60 733	13	AI	26.982	_	↓ ↓	7 2.6	10 011			All	L.	;	
Å	į.	ļ		Pb		<u> </u>		118.71	! _		10.7	4	14		<u>-</u>	+	<u>-</u> پ د	110.21	13 0			IVA	4		
à			<u>ڇ</u>	Bi —	208.98	51	Sb	121.75	33	AS	14.922	74 075	15	っ	30.974	-		14.00/	1 200 7 1			٧A	15		
		-	8.4	Po	(209)	52	Te	127.60	34	S.C	78.96	3	16	<u>دی</u>	32.06	٥		12.999	1			۷I۸	16		
			% 55	At .	(210)	53	}	126.90	35	Br	79.904		17	Ω	35.453	,	ু'ম ——		! 			ΑΙΙΛ	17		
		120	80 }	ਕ 	(222)	54	×e	131.29	36	Ϋ́r	83.80		18	Ar	39.948	10	N _c	20.180	2	He	4.003	AIIIA	18		٠

*Lanthani	•
ide Series	

**Actinide S

		c Series		de Series
	T1 ₁	232 04	58	140.12 Ce
() indi	Pa 91		59	140.91 Pr:
cates the	U 92	77.8.07		144.24 . Nd
() indicates the mass number of the isotope with the longest built is	Np 93	27705	. 61	(145) Pm
umber oj	P ₁₁	342	62	150.36 Sm
the isot	Am 95		<u>ي</u> ز	151.96 En
ope with	C _m		62 6	157.25
the lone	(247) Bk 97		S <u>t</u>	158.93
rest haif	(251) Cf 98		66.5	162.50
lifa	(252) Es	٤	110	164.93
	(257) Fm 100	0	ξr.	167.26
	(258) Md	07	Tm	168.93
	(259) No 102	7	<u></u>	173.04
	(260) Lr 103		Lu	174.97

oc with the tongest haif-tife.

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	С	2.997 924 58 X 10 ⁸ m s ⁻¹ ;
Elementary charge	е	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10⁴ C mol⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	N_A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	m_e	9.109 39 X 10 ⁻³¹ Kg
proton	m_p	1.672 62 X 10 ⁻²⁷ Kg
neutron	m_n	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{\rm o} = 1/c^2 \mu_{\rm o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε _ο	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ_{\circ}	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
Magneton		$4\pi \times 10^{-7} \text{ T}^2 \text{ J}^{-1} \text{ m}^3$
Bohr	$\mu_{\rm B} = e\hbar/2m_{\star}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear		5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	$\mu_{\rm N} = e\hbar/2m_{\rm p}$	2.002 32
Bohr radius	ge	· · · · · · · · · · · · · · · · · · ·
	$a_o = 4\pi \epsilon_o \hbar/m_e e^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{\infty} = m_e e^4 / 8h^3 c \epsilon_o^2$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration of free fall	~	9.806 65 m s ⁻²
Gravitational constant	g G	
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV =		4.184 joules (J)			1 erg			= .	1 X 10 ⁻⁷ J		
		1.602 2 X 10 ⁻¹⁹ J			1 eV/molecule			=	96 485 kJ mol ⁻¹		
Prefix	xes	femto	pico	nano	μ micro 10 ⁻⁶	milli	centi	deci	kilo	M mega 10 ⁶	G giga 10°