COURSE CODE: B201 (S) 2009/2010 Page 1 of 5

UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION PAPER: JUNE 2010

TITLE OF PAPER:

CRYPTOGAMIC BOTANY

COURSE CODE:

B201

TIME ALLOWED:

THREE HOURS

INSTRUCTIONS: 1.

1. ANSWER <u>FOUR</u> QUESTIONS, ONE QUESTION

FROM EACH SECTION.

2. EACH QUESTION CARRIES TWENTY FIVE (25)

MARKS.

3. ILLUSTRATE YOUR ANSWERS WITH LARGE AND

CLEARLY LABELLED DIAGRAMS WHERE

APPROPRIATE.

SPECIAL REQUIREMENTS:

NONE

THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATORS

COURSE CODE: B201 (S) 2009/2010

Page 2 of 5

SECTION A (BACTERIA)

Question 1

- (a) Draw a generalised growth curve of bacteria. Explain the factors that have contributed to each phase of this graph. (10 marks)
- (i) Outline the series of experiments that led to the idea of the existence of a transforming principle in bacteria. (9 marks)
 (ii) At the chromosomal level, how was transformation in 1(b)(i) explained? Illustrate all the steps. (6 marks)

[Total marks = 25]

Question 2

- (a) Outline the steps involved in endospore formation by bacteria. (5 marks)
- (b) Draw and fully label a Gram negative bacterial cell wall. (8 marks)
- (c) Explain the functions of the various wall components you have shown in the diagram in 2(b). Use subtitles for each component. (12 marks)

 [Total marks = 25]

COURSE CODE: B201 (S) 2009/2010 Page 3 of 5

SECTION B (FUNGI)

Question 3

- (a) Prepare a dichotomous key to help in classifying fungi of the division Deuteromycotina (fungi imperfecti). Draw the diagnostic fruiting structures of some of the orders. (10 marks)
- (b) Draw and fully label the life cycle of Penicillium/Talaromyces. (10 marks)
- (c) (i) Explain why this fungus has two names. (2 marks)
 (ii) Explain why members of Deuteromycotina are often re-classified in
 Ascomycotina or Basidiomycotina and not in any of the lower fungal
 groups. (3 marks)

[Total marks = 25]

Question 4

- (a) Explain the charecteristics and distribution of the various kinds of plasmodia found in lower fungi. Cite scientifically named examples to enhance your answer.
 (10 marks)
- (b) Using well labelled diagrams and brief explanations, differentiate between the following:

(i) a sporodochium and a synnema,	(3 marks)
(ii) an ascocarp and an ascostroma,	(3 marks)
(iii) a pycnidium and a perithecium,	(3 marks)
(iv) a sporangium and an aethalium,	(3 marks)
(v) a sporangiophore and a phialide.	(3 marks)
· · · · · · · · · · · · · · · · · · ·	` ,

[Total marks = 25]

COURSE CODE: B201 (S) 2009/2010 Page 4 of 5

SECTION C (ALGAE)

Question 5

(a) Smith G,W. has lumped three divisions of algae recognised by Ian Morris into one division. Justify Morris' three divisions using his five criteria.

(15 marks)

(b) Prepare a possible evolutionary tree of orders of the division Phaeophyta.

Briefly explain what each line represents. (10 marks)

[Total marks = 25]

Question 6

Write an essay on the biology of algae of the division Rhodophyta. Use members of the subclass Florideophycidae to explain sexual reproductive processes.

[Total marks = 25]

COURSE CODE: B201 (S) 2009/2010 Page 5 of 5

SECTION D (BRYOPHYTES)

Question 7

- (a) Discuss the variability of sporophytes among the various bryophyte classes. Illustrate your answer. (15 marks)
- (b) What changes in the biology of bryophytes (from liverworts to mosses) have made them better adapted for a terrestrial life? (10 marks)

 [Total marks = 25]

Question 8

Discuss evolution within mosses. Illustrate any key stages and cite scientifically named examples.

[Total marks = 25]

END OF EXAM PAPER