

UNIVERSITY OF SWAZILAND Faculty of Health Sciences Department of Environmental Health Science

BACHELOR OF NURSING SCIENCE RESIT EXAMINATION PAPER 2018

TITLE OF PAPER

ORGANIC CHEMISTRY AND BIOCHEMISTRY

FOR NURSES

COURSE CODE

GNS 112

DURATION

2 HOURS

MARKS

100

INSTRUCTIONS

READ THE QUESTIONS & INSTRUCTIONS

CAREFULLY

: ANSWER ANY FOUR QUESTIONS

: EACH QUESTION <u>CARRIES 25</u> MARKS.

WRITE NEATLY & CLEARLY

NO PAPER SHOULD BE BROUGHT INTO OR

OUT OF THE EXAMINATION ROOM.

BEGIN EACH QUESTION ON A SEPARATE

SHEET OF PAPER.

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR.

QUESTION ONE

- a) The following compounds have been named incorrectly. Draw structures for the the compounds and give the correct IUPAC names for each.
 - i) 1,2 dichlorohexan-5-ol
 - ii) 2 diethyl octan-7-al

[12 Marks]

- b) Draw the structures of all isomers with the molecular formula C₃H₉N. Give IUPAC names for each isomer.
 [9 Marks]
- c) Formaldehyde, a commonly used biological tissue preservative has the molecular formula CH₂O. Draw the molecular structure and give the functional group/s found in formaldehyde.
 [4 Marks]

QUESTION TWO

- a. Account for the following facts;
 - (i) Chloro-ethane is more reactive than ethane

[3 Marks]

(ii) Fatty acids have polar and non-polar ends.

[3 Marks]

(iii) Tertiary alkyl halides only under S_N1 type of substitution reaction.

[4 Marks]

- b. Draw structures of the compounds de_scribed below and give all possible IUPAC name/s for each structure
 - (i) A three carbon aliphatic chain with an alcohol functionality on each carbon.
 - (ii) A straight chain of eight carbons with two methyl groups on the second carbon, an isopropyl group on the fourth carbon and a carbonyl group on the eighth carbon.
 - (iii) A four carbon chain with a chloro on the third carbon and a methoxy group on the fourth carbon.

 $[3 \times 5 \text{ Marks}]$

GNS 112 RESIT EXAMINATION PAPER MAY 2018

QUE	ES'	TION THREE	
a	ι.	is the ability of carbon to form long c	hains with itself
		therefore creating millions of organic compounds.	[3 Marks]
b).	Organic compounds contain heteroatoms such as C, N,	O, S, P and [3 Marks]
c	: .	Ethene contains onlyhybridised carbons.	[3 Marks]
		Compare E1 and E2 reactions and state the factors that affect thes	-
	٠,	Compare L1 and L2 reactions and state the factors that affect thes	[10 Marks]
		Compare the activation energies required for a secondary and	
e	.	Compare the activation energies required for a secondary and	
		halide to undergo S _N 1 reaction. Justify your answer.	[6 Marks]
QUI	ES'	TION FOUR	
	a.	Explain what is meant by the term 'anticoagulant' and give the	ree examples of
		anticoagulants	[6 Marks]
	b.	What is the difference between blood serum and blood plasma	[4 Marks]
	c.	Steriods are a class of biomolecules made up of three six-member	ered carbon rings
		and one five-membered ring with an aliphatic chain attached or	the five carbon
		ring. Give three examples of steroids and give the function of eac	h example.
			[6 Marks]
	d.	Explain how antioxidant enzymes function and give three examp	les of antioxidant
		enzymes. (use chemical equations in your answer)	[9 Marks]

QUESTION FIVE

a. Match the terms on column 1 with the suitable terms on column 2. Explain how the terms relate.

	Column 1	Column 2
(i)	Stereochemical inversion	E2 reaction
(ii)	Delocalization of positive charge	Aldehydes
(iii)	Terminal functional group	Tertiary carbocation
(iv)	Requires β hydrogen	Chloroethane
(v)	High activation energy	E1
(vi)	Requires strong base	S _N 2

[18 Marks]

Explain how temperature, nature of substrate and pH affects the activity of enzymes in biological systems.
 [7 Marks]

General data and fundamental constants

Quantity ·	Symbol	Value
Speed of light	C	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	8	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
•	••	8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
•		6.2364 X 10 L Torr K-1 moi-1
Planck constant	h	6.626 08 X 10 ³⁴ J s
	$h = h/2\pi$	1.054 57 X-10 ³⁴ J s
Avogadro constant	N _A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	n	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	m _e	9.109 39 X 10 ⁻³¹ Kg
proton	m,	1.672 62 X 10 ⁻²⁷ Kg
neutron .	m _n	1,674 93 X 10 ²⁷ Kg
Vacuum permittivity	$\varepsilon_o = 1/c^2 \mu_o$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε,	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ,	4π X 10 ⁻⁷ J s ² C ⁻² m ⁻¹
•		4π X 10 ⁻⁷ T ² J ¹ m ³
Magneton		
Bohr	$\mu_{\rm s} = {\rm e}\hbar / 2m_{\rm s}$	9.274 02 X 10 ²⁴ J T ¹
nuclear	$\mu_N = e V 2 m_a$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	8e	2.002 32
Bohr radius	$a_n = 4\pi e_n 1/m_n e^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{m} = m_{e}^{4}/8h^{3}c\varepsilon_{e}^{2}$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration	•	
of free fall	g	9.806 65 m s ²
Gravitational constant	√Ğ.	6.672 59 X 10" N m2 Kg-2

Conversion factors

1 cal = 1 eV =	4.184 joules (1.602 2 X 10	· /	l erg	nolecui	e ·	=	96 48	2 kJ m'o	t ⁻¹
Prefixes	femto pico				centi			M mega 10 ⁶	G giga 10°

PERIODIC TABLE OF ELEMENTS

	81	VIIIA	4.003	===	~	20,180	'Ne	10	39.948	Ar	90	83.80	ž	36	131.29	×	×	(222)	Rü	28			
	17	VIIA		,	• ;	18.998	ابتزا	6	35.453	ฮ	12	79.904	ğ	35	126.90		53	(210)	At	85			٠
	91	ΛIA				15.999	0	80	32.06	(C)	9	78.96	Se	34	127,60	Ţ	22	(502)	2	84			
	15	٨٨				14.007	z	2	30.974	P.	5	74.922	ş	33	121.75	Sp	5፤	208.98	ä	83			
	14	ΙΛΑ				12,011	υ	9	28.086	Š	7	72.61	පී	32	118.71	Sa	20	207.2	13	82			
	13	IIIA				F10.811	m	٠, <u>*</u>	26.982	¥	2	69.723	g	31	114.82	Lu	49	204.38	F	20			
	77	118				Atomic mass - 10.811	Symbol	Atomic No.				6239.	5	30	112.41	ਰ	₩	200.59	Hg	80			
`	=	18				Atomi	Syn	Atom				63.546	ប៊ី	29	107.87	Ag	47	196.97	Au	25			
	10											58.69	Z	78	106.42	Pd	8	195.08	갋	78	(292)	Omn O	≘
GROUPS	6	VIIIB								ENTS		58.933	ර	27	102.91	띺	45	192.22	1	11	(392)	Une	2
G	8									ELEM		55.847	F.	26	101:07	Ru	#	190,2	ő	76	(302)	Uno	20
	7	VIIB								RANSITION ELEMENTS		54.938	Mn	25	98.907	T _c	43	186.21	Re	75	(292)	Uns	101
	9	VIB								TRAN		51.996	ර්	24	76.26	Mo	42	183.85	×	75	(263)	Unh	ã
	\$	₩B										50.942	>	23	906.26	ž	41	180.95	Ta	5	(292)	Ha	50
	4	IVB										47.88	F	22	91.224	Ž	Ş	178.49	HŁ	72	(261)	Z	ই
	3	1118				,			_					21		>-	36	138.91	.	57	(222)	**Ac	62
	2	Y			•	9.012	Be		24:305	_		40.078	•••		_	સં			Ba	56	226.03	2	20 20 20
			1.008	=	_	6.941	3	ы	22.990	ž	=	39.098	×	63	85,468	2	37	132.91	ű	55	223	감	22
		PERIODS					7			77			4			ĸ			9			-	

*Lanthanide Series	140.12 140.9 Ce Pr 58 59	140.91 Pr 59	1424 Nd 60	(145) Pm 26	150.36 Sm 62	151.96 Eu 63	157.25 Gd 64	158.93 Tb 65	162.50 Dy 66	164.93 Ho -67	167.26 Er 68	168.93 Tm 69	173.04 Yb 70	174.97 Lu 71
**Actinide Series	732.04 231.04 Th Pa 90 91	732.04 231.04 7 Th Pa 90 91	238.03 U 92	237.05 Np 52	243) % Pu (243)	(243) Am 95	(급 교 8	9 BK (24)	(<u>§</u>	(252) 83 99	(257) FEB 100	(258) Md 101	(259) No 102	(260) Lr 103

() indicates the mass number of the isotope with the longest half-life.