

UNIVERSITY OF SWAZILAND Faculty of Health Sciences Department of Environmental Health Science

BACHELOR OF NURSING SCIENCE FINAL EXAMINATION PAPER 2018

TITLE OF PAPER

ORGANIC CHEMISTRY AND BIOCHEMISTRY

FOR NURSES

SCIENCES

COURSE CODE

GNS 112

DURATION

2 HOURS

MARKS

100

INSTRUCTIONS

READ THE QUESTIONS & INSTRUCTIONS

CAREFULLY

ANSWER ANY FOUR QUESTIONS

EACH QUESTION CARRIES 25 MARKS.

: WRITE NEATLY & CLEARLY

NO PAPER SHOULD BE BROUGHT INTO OR

OUT OF THE EXAMINATION ROOM.

BEGIN EACH QUESTION ON A SEPARATE

SHEET OF PAPER.

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR.

QUESTION ONE

- a. C₂H₅Br undergoes a substitution reaction to produce a corresponding alcohol.
 - (i) What type of substitution reaction will the alkyl halide undergo?

[3 Marks]

(ii) Give two reasons for your answer in (i).

[4 Marks]

(iii) Draw a 3-D structure of the reactant and the product?

[6 Marks]

- b. Draw saturated structures for the following compounds and fill in non-bonding valence electrons where they can be found.
 - i) 1,2-dichloroethane
 - ii) N,N diethyl amine
 - iii) Dimethyl ether
 - iv) 2-bromo-4-methoxyhexanoic acid

[12 Marks]

QUESTION TWO

a. Identify all functional groups in the following compounds

Paracetamol

(ii)

[4 Marks]

(iii)

[6 Marks]

[6 Marks]

b. Explain how antioxidant enzymes function and give three examples of antioxidant enzymes (use chemical equations in your answer). [9 Marks]

QUESTION THREE

- a. The general formula of cellulose can be represented as $(C_6H_{10}O_5)_x$. If the molecular weight of a molecule of cellulose is 400,000, what is the estimated value of x? [7 Marks]
- b. What is the function of a hydrolase enzyme? [4 Marks]
- c. The most common lipids are triglycerides formed from _______

 [4 Marks]
- d. Compare $S_N\mathbf{1}$ and $S_N\mathbf{2}$ reactions and state the factors that affect these reactions.

[10 Marks]

QUESTION FOUR

- a. Fill in the blanks in the following statements.
 - (i) Protein denaturation consists of disruption of
 - (ii) Some steroids are ______that act as "messengers" from one part of the body to another.
 - (iii) Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are the two major kinds of _____
 - (iv) Biochemical processes that involve the alteration of biomolecules are termed as _____

GNS112 FINAL EXAMINATION PAPER 2018 MAY

	(v)	Enzymes are proteinaceous substances with highly specific	structures that
		function as biochemical	
			$[5 \times 3Marks]$
b.	What	is the difference between elimination and addition reactions	? Give examples
	O	f each type of reaction.	[6 Marks]
c.	Draw	all structural isomers of pentene, C5H10, that have unbranche	ed carbon
	cl	nains.	[4 Marks]

QUESTION FIVE

a. Define, with examples, what is meant by isomerism.

[4 Marks]

b. Use the two forms of 1,2-dichloroethene to illustrate cis-trans isomerism.

[6 Marks]

- c. Draw structures of the compounds described below and give the IUPAC name for each structure
 - (i) A compound with five carbons, ketone functional group on the second carbon and a methoxy substituent on the fourth carbon.
 - (ii) A benzene ring with three nitro groups on positions 1,3,5 and a methyl group on the fourth position.
 - (iii) An unsaturated compound, C₄H₈, undergoes a halogenation reaction to produce dichloride product, A. Draw all possible molecular structures of Product A.

[15 Marks]

General data and fundamental constants

Quantity .	Symbol	Value						
Speed of light	C	2.997 924 58 X 10 ⁸ m s ⁻¹						
Elementary charge	8	1.602 177 X 10 ⁻¹⁹ C						
Faraday constant .	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹						
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹						
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ moi ⁻¹						
	**	8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹						
-		6.2364 X 10 L Torr K' moi-						
Planck constant	h	6.626 08 X 10 ⁻¹⁴ J s						
	$h = h/2\pi$	1.054 57 X-10 ³⁴ J s						
Avogadro constant	N_{A}	6.022 14 X 10 ²³ mol ⁻¹						
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg						
Mass								
electron	m _e	9.109 39 X 10 ³¹ Kg						
proton	m,	1.672 62 X 10 ²⁷ Kg						
neutron .	m_{n}	1,674 93 X 10 ³⁷ Kg						
Vacuum permittivity	$\varepsilon_o = 1/c^2 \mu_o$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹						
	4πε,	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹						
Vacuum permeability	μ,	4π X 10 ⁻⁷ J s ² C ⁻² m ⁻¹						
		$4\pi \times 10^{3} \text{T}^{2} \text{J}^{1} \text{m}^{3}$						
Magneton								
Bohr	$\mu_{\rm s} = e\hbar/2m_{\rm s}$	9.274 02 X 10 ²⁴ J T ¹						
nuclear .	$\mu_N = e V 2 m_a$	5.050 79 X 10 ⁻²⁷ J T ⁻¹						
g value	g _e	2.002 32						
Bohr radius	$a_{\rm s} = 4\pi e_{\rm s} \hbar/m_{\rm s} e^2$	5.291 77 X 10 ¹¹ m						
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 X 10 ⁻³						
Rydberg constant	$R_{+} = m_e^4/8h^3c\epsilon_e^2$	1.097 37 X 10 ⁷ m ⁻¹						
Standard acceleration	• •							
of free fall	g	9.806 65 m s ⁻²						
Gravitational constant	- Ğ	6.672 59 X 10" N m2 Kg-2						

Conversion factors

l cal = 1 eV =	4.184 joules (1.602 2 X 10		1 erg 1 eV/r	nolecul	c ·	***	i X 10 ⁻⁷ J 96 485 kJ mol ⁻¹			
Prefixes	f p ferato pico 10 ⁻¹⁵ 10 ⁻¹²	n nano 10-9-	micro	m · milli 10 ⁻³	centi	d deci 10 ⁻¹	k kilo 10 ³	M mega 10 ⁶	G giga 10°	

PERIODIC TABLE OF ELEMENTS

}	2	VIII/	4.003	==	2	20.180	ž	2	39.948	Ar	8	83.80	7	ž	131.29	×	×	(222)	<u> </u>	88															
	12	XIIX		•	• •	18.998	Ľ,	Δ.	35.453	ฮ	17	79.904	ង	35	126.90	-	53	(210)	¥	88			•												
	9	VIA VIA				15.999	0	∞	32.06	ß	9	78.96	Sc	34	127.60	Ť,	22	(503)	2	2															
	15	٨٨				14.007	z	7	30.974	۵,	15	74.922	.¥	33	121.75	Sp	51	208.98	ä	2															
	14	IVA																12.011	υ	9	28.086	Š	4	72.61	ප්	33	118.71	Sa	S	207.2		4			
	13	IIIA				10.811	m .	ر. •	26.982	¥	<u>n</u>	69.723	ő	=	114.82	ä	49	204.38	E	=															
	12	118				Atomic mass - # 10.81	Pol	S. Se				65.39 .	5	39	112.41	Ç	48	200.59	Hg	2															
	11	13				Atomi	Syn	Atomic No.				63,546	õ	23	107.87	AR	47	196.97	Au	79															
	10											58.69	Z	87	106.42	Pd	46	195.08	ᄌ	28	(267)	om D	=												
GROUPS	6	VIIIB	\ .	•						N.L.N.K		58.933	ပိ	27	102.91	Rh	45	192.22	4	11	(266)	Che	109												
C	∞									TRANSITION ELEMENTS	ELEN	55.847	Fe.	76	101:07	Ru	\$	190.2	ő	76	(202)	Uno	108												
	7	V118									(SITIO)		54.938		25	98.907	Te	4 3	186.21	Ra	7.5	(262)	C _{ns}	107											
,	9	VIB.									TRAN	51.996	ბ	24	95.94	Mo	4	183.85	A	74	(263)	Unh	90												
	5	\$											50.942	>	2	22.906	Z	4	180.95	Ta	7.3	(292)	Ha	105											
	4	2										\vdash		_	↦		_	178.49																	
	3	=				_			_			44.956			+		_	138.91			-														
	7	<u>≦</u>	-			9.012	Be	4	+	_	2	40.078	ű	2	87.62	Š	**	137.33	Ba	26	226.03	2	80 70												
	_	≤	Ļ	=	-	6.941	3	n	22 990	ž	!=	39.098	×	2	85.468	Rb	37	132.91	ű	22	223	r.	83												
		PERIODS		•				1		,	7		*	•		·			٠	•		-	,												

173.04 Yb 70	(259) No 102	
168.93 Tm 69	(258) Md 101	
167.26 Er 68	(257) Fran 100	
164.93 Ho 67	(252) Es 99	-life.
162.50 Dy 66	දු වූ	rest half
158.93 Tb 65	る異な	the lon
157.25 Gd 64	S E	ODE WILL
151.96 Eu 63	(243) 8 m 29	(the isot
150.36 Sm 62	(244) Pu 24	umbero
(145) Pm 15	237.05 Np 93	coles the mass n
14.24 Nd 60	238.03 U 92	cates the
140.91 Pr 59	231.04 Pa 91	() ind
140.12 Ce 58	77. 77.	