UNIVERSITY OF SWAZILAND Faculty of Health Sciences Department of Environmental Health Science # BACHELOR OF SCIENCE IN NURSING SCIENCE # **SPECIAL EXAMINATION PAPER 2016** TITLE OF PAPER ORGANIC CHEMISTRY AND BIOCHEMISTRY FOR NURSES COURSE CODE GNS 112 DURATION 2 HOURS MARKS 100 INSTRUCTIONS **READ THE QUESTIONS & INSTRUCTIONS** **CAREFULLY** ANSWER ANY FOUR QUESTIONS : EACH QUESTION **CARRIES 25** MARKS. : WRITE NEATLY & CLEARLY NO PAPER SHOULD BE BROUGHT INTO OR OUT OF THE EXAMINATION ROOM. BEGIN EACH QUESTION ON A SEPARATE SHEET OF PAPER. DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR. | QUESTION ONE | |--------------| |--------------| - a. Explain what is meant by the term 'anticoagulant' and give three examples of anticoagulants. [6 Marks] - b. What is the difference between blood serum and blood plasma? [4 Marks] - c. Steriods are a class of biomolecules made up of three six-membered carbon rings and one five-membered ring with an aliphatic chain attached on the five carbon ring. Give three examples of steroids and give the function of each example. [6 Marks] d. Explain how antioxidant enzymes function and give three examples of antioxidant enzymes. (use chemical equations in your answer) [9 Marks] # **QUESTION TWO** - a. Write explanatory notes on the following carbohydrates. Include examples in your explanations; - (i) Simple. - (ii) Storage. - (iii) Structural. [9 Marks] b. State four properties of enzymes. [8 Marks] c. Explain how temperature and pH affects the activity of enzymes in biological systems. [8 Marks] # **QUESTION THREE** | а. | is the ability of carbon to form long ch | nains with itse | elf | |----|--|-----------------|-----| | | therefore creating millions of organic compounds. | [3 Marks] | | | b. | Organic compounds contain heteroatoms such as H, N, | O, S, P ar | nd | | | · | [3 Marks] | | | c. | Benzene contains only hybridised carbons. | [4 Marks] | | | d. | Name the building blocks of proteins and describe their basic ch | emical structu | re | | | and properties | [9 Marks] | | | e. | Give the molecular formulae of a hydrocarbon containing six ca | irbon atoms th | at | | | is; | | | | | | | | - (i) A saturated hydrocarbon. - (ii) Cycloalkane. - (iii) An alkene. [6 Marks] # **QUESTION FOUR** - a. Draw structures for the following compounds and show non-bonding valence electrons where they can be found. - i) m methylphenol - ii) Ethylpropyl ether - iii) 6-methyl nonanal - iv) 4,5 divinyl octane - v) 2-bromo-4.methoxyhexanal [10 Marks] b. Discuss the nature and importance of lipids in living organisms. [15 Marks] # **QUESTION FIVE** - a. With reference to monosaccharides, explain the following - (i) Condensation. - (ii) Hydrolysis - (iii) Mutarotation [12 Marks] - b. Draw structures of the compounds described below and give the IUPAC name for each structure; - (i) An aromatic compound containing one benzene ring and a methyl group which is *ortho* to a bromo group and *meta* to a hydroxyl group. [4 Marks] - (ii) A straight chain of eight carbons with two methyl groups on the second carbon, an *iso* propyl group on the fourth carbon and a carbonyl group on the eighth carbon.[4 Marks] - (iii) An unsaturated compound, C₃H₆, undergoes a halogenation reaction to produce dichloride product, A. Draw the molecular structure of Product A. [5 Marks] # UNIVERSITY OF SWAZILAND Department of Chemistry | H | 1 | | | | | | | | | | | | | | | | | | ; | |--|--|----------|--------|----|----|-----|-----------|--------|--------|-----------|-------|--------|----|----------|--------|--------|--------|----------|--------------| | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | | | | | | Atc | omic Numb | 7. | He | | | | | | | | | | He
√.002d | | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | 4 | | | | | | | | 4.0026 | Atomic We | eight | | S | 9 | 7 | | 8 | 6 | 0.1 | | 1081 1201 1400 | <u>m</u> | ده | | | | | |] | | | | | | <u> </u> | C | Z | 0 | <u> </u> | Ne | | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | | 20122 | | | | | | | | | | | | 10.811 | 12.011 | 14.007 | 15.999 | 18,998 | 20.179 | | Sc Ti V Cr Mn Fe Co Ni Cu Zn Ss Ss Ss Ss Ss Ss Ss S | 12 | | | | | | | | | | | | 13 | 14 | | | 16 | 17 | 00 | | Sc Ti V Cr Mn Fe Co Ni Cu Zn Gs.39 30 31 32 34 34 34 34 34 34 34 | <u> </u> | Ig | | | | | | | | | | | _ | | S | 4 | S | ت
ت | Ar | | Sc Ti V Cr Mn Fe Co Ni Cu Zn Ge As | | 24,305 | | | | | | | | | | | | 26.982 | 28.086 | 30.974 | 32.064 | 35.633 | 39.948 | | Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ga Ga Ga Ga Ga Ga G | 20 | | 21 | 22 | 23 | | | | | | | 30 | 31 | 32 | | | | 35 | 99 | | 14.956 47.88 50.942 51.996 54.938 53.847 58.933 58.69 63.346 65.339 69.723 72.61 74.922 72.61 74.922 72.61 74.922 72.61 | | _e | Š | Ţ | > | Ç | Mn | Fe | ပိ | ž | Cu | Zn | _ | ূলু | g | As | Se | Br | Kr | | 39 40 41 42 44 45 46 47 48 48 49 50 51 52 12 | | 40.078 | 14.956 | | | | | | | | | 65.39 | | 69.723 | 72.61 | 74.922 | 78.96 | 79.904 | 83.80 | | Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb | 38 | | 39 | 40 | 41 | | | | | | | 48 | 49 | 20 | | | | 53 | 54 | | State Stat | 9 2 | Ţ | X | Zr | NP | Mo | Tc | Ru | Z | Pd | Ag | _ | _ | | Sn | Sb | Te | | Xe | | St T2 T3 T4 T5 T6 T7 T8 T9 T9 T1 T9 T1 T1 T1 T1 | | 87.62 | 88.906 | | | | (86) | 101.07 | | | | | | 114.82 | 118.71 | 121.75 | 127.60 | 126.90 | 131.29 | | La Hf Ta W Re Os Ir Pt Au Hg Ti Pb Bi Bi Bi Bi Bi Bi Bi B | 8 | | 57 | 72 | 73 | | | | | | | 08 | | 82 | | | 28 | 85 | 36 | | 138.91 178.49 180.95 188.85 186.2 190.2 192.22 195.08 196.97 200.59 207.2 207.2 | | Za
Za | La | Ht | Ta | × | Re | ő | ľ | Pt | Au | Hg | | | Pb | Bi | P_0 | At | Rn | | 68 | | 137,33 | 138.91 | | | | 186.2 | | | | | 200.59 | | 85.402 | 207.2 | 208.98 | (602) | (210) | (222) | | £03 | 88 | | 68 | | | | | | | | | | | | | | | | | | | <u> </u> | | Ac | 226.03 | 227.03 | | | | | | | | | | | | | | | | | | | t | 225 | |-----|------------------|---------------------------| | 7.1 | Lu 174.97 | 103
Lr
(260) | | 70 | Yb
173.04 | NO (259) | | 69 | Tm
168.93 | Md (25% | | 89 | Er
167.26 | Fm
F27/ | | 29 | H0 164.93 | 99
ES | | 99 | Dy
102.50 | Cf
(251) | | 65 | Tb
/38.93 | Bk 2+7 | | 2 | Gd | Cm
(247) | | 63 | Eu 151.97 | 5
Am
(234) | | 62 | Sm
150.36 | Pu (244) | | 61 | Pm | N p | | 09 | Nd | 72
U
238.03 | | 26 | Pr
140.91 | 1
Pa
231.04 | | | Ce 140.12 | Th |