University of Eswatini

Resit Examination – 2020/21

BSc in Env. Health I

Title of Paper : Algebra for Health Sciences

Course Number : EHS101

Time Allowed : Two (2) hours

Instructions:

1. This paper consists of 2 sections.

2. Answer ALL questions in Section A.

- 3. Answer ANY 2 questions in Section B.
- 4. Show all your working.
- 5. Begin each question on a new page.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Section A Answer ALL Questions in this section

A.1 a. Without using a calculator, showing ALL your steps, find the value of

$$\frac{\log 45 - \log 5}{\log 3}.$$

[4 marks]

b. Consider the straight line segment from A(-2,3) to B(4,-5).

i. Find the coordinates of the midpoint of AB

[2 marks]

ii. Find the equation of the perpendicular bisector of AB

[6 marks]

c. Given the matrices

$$A = \begin{pmatrix} 2 & -3 & 1 \\ 1 & 5 & 0 \\ -4 & 1 & 3 \end{pmatrix}, B = \begin{pmatrix} 3 & 0 \\ -1 & 2 \\ 4 & 1 \end{pmatrix},$$

evaluate

i.
$$2A^T + 4B$$

ii.
$$B^T A$$

iii.
$$|A|$$

[12 marks]

d. Find the value of the sum

$$\sum_{n=0}^{200} (7n+2).$$

[6 marks]

e. Use synthetic division to find the quotient and remainder of

$$\frac{x^2 - x^3 + 3x + 7}{x - 3}.$$

[6 marks]

g. Solve for x given

i.
$$\log_2(2x-7)=0$$

[3 marks]

ii.
$$3^{x-2} = 73$$
 (correct to 2 d.p.)

[4 marks]

h. Given the vectors

$$\mathbf{A} = -5\hat{\mathbf{i}} + \hat{\mathbf{j}} - 4\hat{\mathbf{k}}, \quad \mathbf{B} = \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix},$$

find

i.
$$|3A - 2B|$$

[4 marks]

ii.
$$A \cdot B$$

[3 marks]

Section B

Answer ANY 2 Questions in this section

B.2 a. Use Cramer's rule to solve the simultaneous system

$$\begin{aligned}
x - 2y + z &= 3 \\
3y - 2z &= 0 \\
2x - z &= -2.
\end{aligned}$$

[15 marks]

b. Find the angle between the vectors

$$\mathbf{A} = \hat{\mathbf{i}} + 4\hat{\mathbf{j}} + 6\hat{\mathbf{k}}, \quad \mathbf{B} = \begin{pmatrix} 7 \\ -3 \\ 2 \end{pmatrix}.$$
 [10 marks]

B.3 a. Consider the quadratic function

$$y = 20x - 4x^2.$$

i.	Find the coordinates of the roots	[3 marks]

iii. Find the coordinates of the
$$y$$
-intercept [1 marks]

iv. Make a sketch of the graph of
$$y$$
 [4 marks]

b. The profit P (in Emalangeni) of a company is given by

$$P(x) = 75x - 0.03x^2 - 5400,$$

where x is the number of units sold per month.

- ii. Find the maximum profit and the number of units required to achieve this. [4 marks]
- c. For the triangle with vertices A(-5,6), B(7,1) and C(-1,-5), find

i. the interior angle
$$\hat{C}$$
. [3 marks]

B.4 a. Find the value(s) of x such that the sequence

$$x+2, x+3, 2x^2+1$$

is an arithmetic progression.

[4 marks]

b. The number of seats in the first 4 rows of a sitting section of a stadium are given below.

 Row
 1
 2
 3
 4

 Number of Seats
 27
 31
 35
 39

If the number of seats continue to increase by 4 between consecutive rows and the sitting section has a total of 48 rows, find

i. the number of seats in row 25

[2 marks]

ii. the row with 171 seats

[3 marks]

iii. the total number of seats in the section

[5 marks]

c. In the binomial expnasion of

$$\left(x^2 + \frac{1}{x}\right)^{24},$$

find

i. the first 4 terms.

[7 marks]

ii. the 15th term

[4 marks]

B.5 a. Using the remainder theorem, the rational root theorem and synthetic division, factorise the polynomial

$$P(x) = x^3 - 4x^2 + x + 6.$$

Hence, find all the roots of P(x).

[10 marks]

b. Simplify

$$2\log(100x) - 3\log(10x^2) + 4\log x.$$

[5 marks]

c. After acquiring a new farm, a farmer buys a herd of 50 cattle. If the relative growth rate of the herd is 25% per year and the carrying capacity of the farm is 400, then the number of cattle is modelled by the *logistic* equation

$$P(t) = \frac{400}{1 + 7e^{-0.25t}}$$

where t is the number of years after the initial introduction. Find

a. the number of cattle after 4 years

[3 marks]

b. how long it takes for the cattle to reach 360.

[7 marks]