University of Eswatini

Final Examination - 2020/21

Env. Health I

Title of Paper : Algebra for Health Sciences

Course Number: EHS101

Time Allowed : Two (2) hours

Instructions:

1. This paper consists of 2 sections.

2. Answer ALL questions in Section A.

3. Answer ANY 2 questions in Section B.

4. Show all your working.

5. Begin each question on a new page.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Section A Answer ALL Questions in this section

A.1 a. Without using a calculator, showing ALL your steps, find the value of

$$3 \log 5 + \log 24 - \log 3$$
.

[4 marks]

b. Considere the straight line segment from A(-2,3) to B(4,-5).

i. Find the length of the straight line AB

[4 marks]

ii. Find the equation of AB in general form

[6 marks]

c. Given the matrices

$$A = \begin{pmatrix} 2 & -3 \\ 1 & 5 \end{pmatrix}, B = \begin{pmatrix} 3 & 0 \\ -1 & 2 \\ 4 & 1 \end{pmatrix},$$

evaluate

i. $2A - 5B^T$

ii. BA^T

[6 marks]

d. Find the value of the sum

$$\sum_{n=0}^{150} 640 \left(\frac{9}{8}\right)^n.$$

[6 marks]

e. Use synthetic division to find the quotient and remainder of

$$\frac{2x-x^2+x^4+7}{x+2}$$
.

[6 marks]

g. Solve for x given

i.
$$x^2 - 4x + 13 = 0$$

[4 marks]

ii.
$$5^{1-x} = \frac{1}{49}$$
 (correct to 2 d.p.)

[4 marks]

h. Given the vectors

$$m{A} = 2\hat{m{i}} - 3\hat{m{j}} + \hat{m{k}}, \quad m{B} = \begin{pmatrix} -4 \\ 0 \\ 2 \end{pmatrix},$$

find

i.
$$|2A + B|$$

[4 marks]

ii.
$$A \times B$$
.

[6 marks]

Section B

Answer ANY 2 Questions in this section

B.2 a. Use Cramer's rule to solve the simultaneous system

$$2x - y + z = -4$$

$$x + y - 2z = 0$$

$$2x + z = 3$$

[15 marks]

b. Find the angle between the vectors

$$\mathbf{A} = 2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + \hat{\mathbf{k}}, \quad \mathbf{B} = \begin{pmatrix} -4 \\ 0 \\ 2 \end{pmatrix}.$$
 [10 marks]

B.3 a. Consider the quadratic function

$$y = x^2 + 2x - 15.$$

i. Find the coordinates of the roots [3 marks]

ii. Find the coordinates of the vertex [3 marks]

iii. Find the coordinates of the *y*-intercept [1 marks]

iv. Make a sketch of the graph of y [4 marks]

- b. A rectangular metal sheet whose length is twice its width is crafted into an open box by cutting out 4×4 centimetre squares from each corner, and folding up the flaps. If the volume of the box is $768 \, \text{cm}^3$, find the dimensions of the original metal sheet. [6 marks]
- c. For the triangle with vertices A(-2,4), B(4,11) and C(0,-5), find

i. the interior angle \hat{C} . [3 marks]

ii. the *exact* area of the triangle [5 marks]

- **B.4** a. The 7th term of an AP is 47. If the 11th term is 75, find the first term and the common difference of the AP. [3 marks]
 - b. A parent sets up a savings account for their child by making monthly deposits, beginning end of January 2021. The first few deposits are as shown below.

Month	Jan~2021	Feb~2021	March~2021	April~2021
Deposit	E500	E475	E451.25	E428.69

If the deposits continue in the same trend, find

i. the deposit in June 2022

[3 marks]

ii. the month in which the deposit will be 131.76

[4 marks]

iii. the *total* deposited by December 2023

[5 marks]

iv. the *total* deposited if the deposits continue "forever"

[3 marks]

c. In the binomial expnasion of

$$\left(x^2 - \frac{2}{x}\right)^{18},$$

find the first 4 terms.

[7 marks]

B.5 a. Consider the polynomial

$$P(x) = 2x^3 + Ax^2 + Bx + 6,$$

where A and B are constants.

- i. Given that (x-3) is a factor of P(x), while a remainder of 12 is left when P(x) is divided by (x+1), find the values of A and B. [5 marks]
- ii. Hence factorise P(x) and find all its roots.

[5 marks]

b. Prove that

$$1 - \frac{\sin^2 A}{1 + \cos A} = \cos A.$$
 [5 marks]

c. Solve for x:

i.
$$\log_2(x-3) + \log_2(x+3) = 4$$

[5 marks]

ii.
$$e^{6-x} = 2^x$$

[5 marks]

END OF EXAMINATION_