

UNIVERSITY OF ESWATINI Faculty of Health Sciences Department of Environmental Health Science

B,Sc. DEGREE IN ENVIRONMENTAL HEALTH SCIENCE

MAIN EXAMINATION PAPER DECEMBER 2019

TITLE OF PAPER

: RESEARCH METHODS

COURSE CODE

: EHS 309

DURATION

: 2 HOURS

MARKS

: 100

INSTRUCTIONS

: READ THE QUESTIONS & INSTRUCTIONS

CAREFULLY

: ANSWER ANY FOUR QUESTIONS

: EACH QUESTION CARRIES 25 MARKS.

: WRITE NEATLY & CLEARLY

: NO PAPER SHOULD BE BROUGHT INTO THE

EXAMINATION ROOM.

: BEGIN EACH QUESTION ON A SEPARATE SHEET

OF PAPER.

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR.

QUESTION ONE (5 marks each)

1A. Prepare a factorial design table for the following experimental research:

An experiment was conducted to evaluate the effectiveness of three different chemicals (A, B, C) used for coagulation. In addition, the chemicals are to be combined with other two different concentrations of coagulant aid (D, E). The test is to be repeated at three different pH values (F, G, H).

1B. Which of the following is/are true?

- i. Construct validity is the extent to which a measuring instrument covers a representative sample of the domain of behaviors to be measured.
- ii. Criterion validity is the extent to which a measuring instrument accurately predicts behavior or ability in a given area
- iii. Content validity is the degree to which a measuring instrument accurately measures the theoretical trait that it is designed to measure.
- iv. Face validity is a measure of the truthfulness of a measuring instrument.
- **1C.** State the type of reliability test a researcher is employing in each of the following cases:
 - i. A researcher carrying out metal analysis did 5 sample repetition analyses.
 - ii. A researcher carrying out metal analysis used two different methods (method A and method B) to analyze the metals and compared the results.
 - iii. A researcher asked another laboratory researcher to analyze a replicate of the sample he is analyzing and compared the results with his own.
- 1D. State the type of study in each of the following cases:
 - i. Socio-economic characteristics of people such as their age, education, marital status, number of children and income;
 - Socio-economic, physical, political variables that influence the availability of food;
 - iii. a doctor treats a patient with a skin condition with different creams to see which is most effective;
- 1E. List the advantages and disadvantages of cohort types of study

QUESTION TWO (5 marks each)

į

- 2A. Describe briefly the following forms of reliability:
 - i. Test-retest reliability
 - ii. Split half reliability
 - iii. Alternate forms reliability
 - iv. Inter-rater reliability
- 2B. A researcher wishes to undertake a research to determine whether inhalation or oral administration of medicine was appropriate for children suffering from asthma. The researcher is working in a rural region that is provided with a local hospital. The researcher needs to provide the study report in one year time. Discuss in detail the research approach that is appropriate in this case and what the research needs to do to carry out this research.
- **2C.** State the type of research study followed in the following:

In a classic study, Doll and hill compared the smoking habits of two groups of patients in London hospitals: Those with carcinoma of the lungs and those with other cancers. Several aspects of smoking behavior were investigated as potential antecedent events, including the number of cigarettes smoked, history of smoking and whether smoked or inhaled. Although both groups contained a great proportion of smokers, evidence for an association between cigarette smoking and lung cancer was obtained from the study.

- 2D. List and define the different types of <u>triangulation</u> used in research.
- **2E.** List and define the six ethical principles that must be followed in the course of conducting research.

QUESTION THREE (5 marks each)

- 3A. An occupational health officer wishes to estimate the mean rate of accident per year in a factory with a population of worker of 3000. From previous national level studies a standard deviation of 20 accidents/per year was reported. If the researcher is willing to tolerate a marginal error of up to 4 accidents/year in his estimate, how many subjects should be included in his study? $\alpha = 5\%$ two-sided. Assume also that 10% of the subjects will fail to participate in the survey.
- 3B. A research study was conducted in a community to determine if members of the community who abstract water from a nearby river were exposed to water borne illnesses. The total population of households is 2000 and the households were randomly selected and a representative sample size was selected using statistical criteria. State the possible error that exists in this sampling approach.
- **3C.** List and define the three types of interviews used in data collection. Discuss also their advantages and disadvantages.
- 3D. An environmental science researcher carried out air temperature measurements at two locations and found out that at location A, the temperature was 15 degree Celsius and at location B it was 30 degree Celsius. He then reported that location B was twice as warm as location A. Discuss if this report by the researcher was accurate or not and give reasons for your answer.
- 3E. List and explain three sources of errors that may arise when conducting interview.

QUESTION FOUR (5 marks each)

4A. Prepare a coding table and coding to the following data.

Name of	Question	Answer (please tick)
respondents		
Alexandra	How do you rate the value of	-Excellent
Hudson	the training you have	-Very good
	undertaken	-Good
		-Average
		-Poor
		-Very poor
		- I do not know
Mark		
Grummel		

- **4B.** A lecturer of a certain subject plotted the stem and leaf diagram of a test result for a certain class. The plot is shown below. Answer the following questions:
 - i) What is the median score?
 - ii) What is the range?
 - iii) Does the plot follow a normal distribution?

VAR00006 Stem-and-Leaf Plot

Frequency	Stem	&	Leaf
3.00	4		223
3.00	4		689
18.00	5		011122222233334444
10.00	5		5577778899
16.00	6		0011223333344444
11.00	6		55566677789
13.00	7		0012222333334
3.00	7		557
2.00	8		02
1.00	8		8
Stem width: Each leaf:	10) ase (s)

- 4C. A researcher believes that the percentage of people who smoke in a certain location is greater than the national average. The national rate is 15%. The researcher gathers a random sample of 110 individuals who live in the region and finds that the number who smoke is 21 out of 110.
 - i) What statistical test should be used to analyse the data?
 - ii) Identify the null and alternative hypothesis for the study?
 - iii) What should the researcher conclude from the statistical test (give the calculation in detail)?
- **4D.** A researcher is interested in analyzing the correlation between being a member of a social club and drinking habit (explained by the number of alcoholic drinks taken per week). What type of correlation coefficient should be used for the study?
- **4E.** Describe the relationship between acceptance/rejection of the null hypothesis with increase or decrease of:
 - i. Type I error
 - ii. Type II errors.

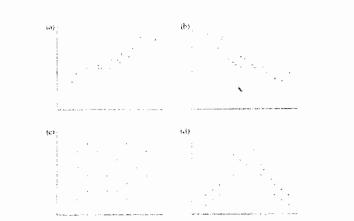
In other words explain what will happen to the correctness of the decision either to accept or reject the null hypothesis if i) if type I error is to large or too small and ii) if type II error is too large or too small.

QUESTION FIVE (5 marks each)

5A. The mean score and standard deviation of Test #1 for a given subject for two of the degree programme students (labeled as I and II in the table) are given in the following table.

Programme	I	II
Mean score	61.33	61.83
Standard		
deviation	6.93	11.22
Number of		
students	18	20

Determine whether there is a significant difference in the mean between the two sections. A normality test for the data revealed that the data follow normal distribution.

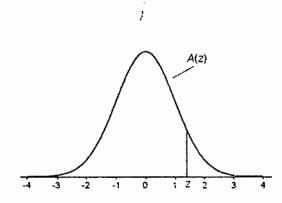

Note that for two independent sets of data the pooled standard deviation (s_p) and t test statistics (t^*) will take the following form

$$s_p = \sqrt{rac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1 + n_2 - 2}}$$

$$t^* = rac{ar{x}_1 - ar{x}_2}{s_p \sqrt{rac{1}{n_1} + rac{1}{n_2}}}$$

Where the x_1 and x_2 values are the mean values for the two data, the s1 and s_2 are standard deviation, n_1 and n_2 are number of samples, s_p is the pooled standard deviation and t^* is the t test statistic.

- **5B.** For each of the scatter plot shown in the figure below labeled a, b, c and d, answer the following.
 - i) Indicate the possible close value for correlation coefficient
 - ii) From this correlational values is it possible to determine the presence or absence of correlation? State the reason.
 - iii) State for which part of the scatter plot linear correlation formula can be applied. State the reason for your choice.


5C. The concentration of dust in the air was measured at to different points in a city A and B whereby A is a low latitude location whereas B was a high altitude location. The measurements were made in summer season (C) and winter season (D). The following results were obtained.

	Low altitude (A)	High altitude (B)
Summer measurement (C)	$25 \mu\text{g/m}^3$	$40 \mu g/m^3$
Winter measurement (D)	$30 \mu g/m^3$	$35 \mu \text{g/m}^3$

Determine if altitude and seasons can be taken as independent variables in determining the concentration of dust in the air for the city.

- 5D. A researcher conducting an interview to a group of respondents received complaints from the respondents that the interview was too long and it make them tired. The researcher responded that he knew that the interview would be too long and would make them tired but that he needs the data for the research and apologized for the inconvenience. State the type of ethical principle that the researcher violated.
- **5E.** To assess the reliability of a data collecting instrument a researcher uses a split half test in whereby both halves involve questionnaire consisting of questions that used ordinal ranking scales. To assess the reliability of this instrument which type of correlation should the researcher use?

Cumulative Standardized Normal Distribution

A(z) is the integral of the standardized normal distribution from $-\infty$ to z (in other words, the area under the curve to the left of z). It gives the probability of a normal rahdom variable not being more than z standard deviations above its mean. Values of z of particular importance:

_			
	:	A(z)	
_	1.645	0.9500	Lower limit of right 5% tail
	1.960	0.9750	Lower limit of right 2.5% tail
	2.326	0.9900	Lower limit of right 1% tail
	2.576	0.9950	Lower limit of right 0.5% tail
	3.090	0,9990	Lower limit of right 0.1% tail
	3.291	0.9995	Lower limit of right 0.05% tail

2	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.\$238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.2 2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	4.7774	4.7770	4.7770	2.7770	3.7770	3.220	4.2270

EHS 309 MAIN EXAMINATION PAPER 2019 DECEMBER

	t Distribution: Critical Values of t							
		Significance level						
Degrees of freedom	Two-tailed test: One-tailed test:	10% 5%	5% 2.5%	2% 1%	1% 0.5%	0.2% 0.1%	0.1% 0.05%	
1		6.314	12.706	31.821	63.657	318.309	636.619	
2		2.920	4.303	6.965	9.925	22.327	31.599	•
3 4		2.353	3.182	4.541	5.841	10.215	12.924	
4		2.132	2.776	3.747	4.604	7.173	8.610	
5		2.015	2.571	3.365	4.032	5.893	6.869	
6 7 8 9		1.943	2.447	3.143	3.707	5.208	5.959	
,		1.894 1.860	2,365 2,306	2.998 2.896	3. 499 3.355	4.7 8 5 4.501	5.408 5.041	
ŏ		1.833	2.262	2.821	3.250	4.297	4.781	
10		1.812	2.228	2.764	3.169	4.144	4.587	
11		1.796	2.201	2.718	3.106	4.025	4.437	
12		1.782	2.179	2.681	3.055	3.930	4.318	
13		1.771	2.160	2.650	3.012	3.852	4.221	
14		1.761	2.145	2.624	2.977	3.787	4.140	
15		1.753	2.131	2.602	2.947	3.733	4.073	
16		1.746	2.120	2.583	2.921	3.686	4.015	
17		1.740	2.110	2.567	2.898	3.646	3.965	
18		1.734	2.101	2.552	2.878	3,610	3.922	
19		1.729	2.093	2.539	2.861	3.579	3.883	
20		1.725	2.086	2.528	2.845	3.552	3.850	
21		1.721	2.080	2.518	2.831	3.527	3.819	
22		1.717	2.074	2.508	2.819	3.505	3.792	
23		1.714	2.069	2.500	2.807	3.485	3 768	
24		1.711	2.064	2.492	2.797	3.467	3.745	
25		1.708	2.060	2.485	2.787	3.450	3.725	
26		1.706	2.056	2.479	2,779	3,435	3.707	
27 28		1.703 1.701	2.052 2.048	2.473 2.467	2.771 2.7 63	3.421 3.408	3.690 3.674	
29		1.699	2.045	2.462	2.756	3.396	3.659	
30		1.697	2.042	2.457	2.750	3.385	3.646	
32		1.694	2.037	2.449	2.738	3.365	3,622	
34		1.691	2.032	2.441	2.728	3.348	3.601	
36		1.688	2.028	2.434	2.719	3.333	3.582	
38		1.686	2.024	2.429	2.712	3.319	3,566	
40		1.684	2.021	2.423	2.704	3.307	3.551	
42		1.682	2.018	2.418	2.698	3.296	3.538	
44		1.680	2.015	2.414	2.692	3.286	3.526	
46		1.679	2.013	2.410	2.687	3.277	3.515	
48 50		1.677 1.676	2.011 2.009	2.407 2.403	2.682 2.678	3.269 3.261	3.505 3.496	
60 70		1.671 1.667	2.000 1.994	2.390 2.381	2.660 2.648	3.232 3.211	3,460 3,435	
80		1.664	1.994	2.374	2.639	3.195	3.433	
90		1.662	1.987	2.36\$	2.632	3.183	3,402	
100		1.660	1.984	2.364	2.626	3.174	3.390	
120		1.658	1,980	2.358	2.617	3.160	3.373	
150		1.655	1.976	2.351	2.609	3.145	3.357	
200		1.653	1.972	2.345	2.601	3.131	3.340	
300		1.650	1.968	2.339	2.592	3.118	3.323	
400		1.649	1.966	2.336	2.588	3.111	3.315	
500		1.64\$	1.965	2.334	2.586	3.107	3.310	
600		1.647	1.964	2.333	2.584	3.104	3.307	
∞		1.645	1.960	2.326	2.576	3.090	3.291	

Page 10 of 11

Table A.4 / (Chi-Squared) Distribution: Critical Values of χ^2

Significance level Degrees of freedom 5% 100 0.1% 1 3.841 6.635 10.828 2 5.991 9.210 13.816 3 7.815 11.345 16.266 13.277 4 9.488 18.467 5 11.070 15.086 20.515 б 12.592 22,458 16.812 7 14.067 18.475 24.322 8 15.507 20.090 26.124 9 16.919 21.666 27.877 18.307 23,209 29.588 10