

UNIVERSITY OF SWAZILAND Faculty of Health Sciences Department of Environmental Health Science BACHELOR OF SCIENCE IN ENVIRONMENTAL HEALTH

RESIT EXAMINATION PAPER 2019

TITLE OF PAPER

CHEMISTRY FOR HEALTH

SCIENCES

COURSE CODE

EHS 111

DURATION

2 HOURS

MARKS

100

INSTRUCTIONS

READ THE QUESTIONS & INSTRUCTIONS

CAREFULLY

ANSWER ANY FOUR QUESTIONS

: EACH QUESTION <u>CARRIES 25</u> MARKS.

: WRITE NEATLY & CLEARLY

NO PAPER SHOULD BE BROUGHT INTO OR

OUT OF THE EXAMINATION ROOM.

: BEGIN EACH QUESTION ON A SEPARATE

SHEET OF PAPER.

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR.

QUESTION ONE

a. Solid aluminum and gaseous oxygen react in a combination reaction to produce aluminum oxide:

$$4Al(s) + 3O_2(g) \rightarrow 2Al_2O_3(s)$$

In a particular experiment, the reaction of 2.5 g of Al with 2.5 g of O₂ produced 3.5 g of Al₂O₃. What is the % yield of the reaction?

[9 Marks]

b. The value of ΔH° for the reaction below is -1107 kJ:

$$2Ba(s) + O_2(g) \rightarrow 2BaO(s)$$

How many kJ of heat are released when 15.75 g of Ba (s) reacts completely with oxygen to form BaO (s)? [6 Marks]

c. Of the acids in the table below, which one is the strongest acid.

Acid	Ka
HOAc	1.8 × 10 ⁻⁵
нсно2	1.8 × 10 ⁻⁴
HCIO	3.0 × 10 ⁻⁸
HF	6.8 × 10 ⁻⁴

[3 Marks]

d. The K_a of hypochlorous acid (HClO) is 3.0 × 10⁻⁸ at 25.0°C. What is the % ionization of hypochlorous acid in a 0.015 M aqueous solution of HClO at 25.0°C?
[7 Marks]

Total: 25 marks

QUESTION TWO

- a. Write the full electron configuration of the following ions
 - (i) Mn⁴⁺
 - (ii) I-
 - (iii) S²-

[3×3 Marks]

- b. For each of the following redox reaction equations, identify oxidizing and reducing agents and assign oxidation numbers of all atoms involved in the redox reaction.
 - (i) $MnO_4^- + Br^- \rightarrow Mn^{2+} + Br_2$
 - (ii) $CN^- + Fe^{3+} \rightarrow CNO^- + Fe^{2+}$

 $[2 \times 4 \text{ Marks}]$

c. Silver nitrate and aluminum chloride react with each other by exchanging anions:

$$3AgNO_3$$
 (aq)+ $AlCl_3$ (aq) $\rightarrow Al(NO_3)_3$ (aq) + $3AgCl$ (s)

What mass in grams of AgCl is produced when 4.22 g of AgNO₃ react with 7.73 g of AlCl₃? [8 Marks]

Total: 25 Marks

QUESTION THREE

- a. A sample of a liquid with a mass of 8.657 g was decomposed into its elements and gave 5.217 g of carbon, 0.9620 g of hydrogen, and 2.478 g of oxygen. What is the percentage composition of this compound? [6 Marks]
- b. Determine the pOH of a 0.35 M aqueous solution of CH₃N H₂ (methylamine). The K_b of methylamine is 2.7×10^{-4} . [7 Marks]
- c. Classify the following acids and bases using the various acids and bases

	EHS 111 K	ESII EXAMINATION PAPER NOVEMBER 2019	
	definitions. For each cl	assification, state the reason why.	
	(i) NH ₃		
	(ii) H ₂ O	÷	
	(iii)OH ⁻	g d	
	(iv) CO `		[12 Marks]
			Total: 25 Marks
QU	ESTION FOUR		
a.	What are the bond polarity	y limits for a polar covalent compound?	[4 Marks]
b.	Use the electronegativity	table to determine whether the following	ng compounds are

- ionic or covalent (pure or polar) compounds. Provide a reason for each answer. (i) SO₂
- (ii) CsBr
- (iii)PbNO₂
- (iv)ZnO
- (v) C_2H_6

[15 Marks]

State the first law of thermodynamics.

[3 Marks]

d. With reference to enthalpy changes, what does the term "standard conditions" [3 Marks] mean?

Total: 25 marks

QUESTION FIVE

a. If a sample is found to contain only phosphorous & oxygen has percent composition 56.34% P & 43.66% O, is the molecular formula of the sample [10 Marks] P_4O_{10} ?

- b. When a 0.2312 g sample of a compound was analyzed, it was found to contain
 0.0894 g of C, 0.0375 g of H, and 0.1043 g of N. Calculate the empirical formula of this compound.
 [8 Marks]
- c. In an experiment, 40.0 cm³ of 0.270 M barium hydroxide were mixed with 20.0 cm³ of 0.330 M aluminium sulphate. What is the total mass of the precipitate that forms?

[7 Marks]

Total: 25 marks

PERIODIC TABLE OF ELEMENTS

	18	VIIIA	4.003	Ilc	~	20.180	'Ne	0	39.943	Ar	82	83.80	¥	36	131.29	×	X	(222)	Ϋ́	2										
		VIIA		•	• .	18.998	E.	٥,	35.453	ប	-2	79.904	Br	35	126.90	_	53	(210)	At	88										
	91	VIA				15.999	0	€	32.06	S	16	78.96	Sc	34	127.60	Te	22	(503)	Po	84			: •							
	15	٧A											14.007	z	7	30.974	Q,	15	74.922	As	33	121.75	Sb	51	208.98	ä	8			
	14	IVA											12.011	ပ	v	28.086	Š	7	72.61	క	32	118.71	Sn	50	207.2	Pb	82			
	13	IIIA											i	10.811	m A	٠ •	26.982	¥	<u></u>	69.723	ర	Ħ	114.82	ä	49	204.38	H	₩		
	12	113				Atomic mass -	Symbol -	Atomic No.				6239.	20	39	11241	Ü	48	200.59	Hg	8										
	11	18				Atom	Syn	Atom				63.546	<u></u>	29	107.87	Ag	47	196.97	Αu	٤										
	10											58.69	ž	28	106.42	Pd	46	195.08	₽ŧ	78	(292)	Uun	<u> </u>							
GROUPS	6	VIIIB											ENTS	ENTS	58.933	රි	27	102.91	뙶	45	192.22	Ιr	11	(997)	Une	109				
G	∞		•												N ELEN	55.847	5	26	101:07	Ru	44	190.2	ő	9/	(592)	Uno	80			
	7	VIIB								TRANSITION ELEMENTS		54.938	Mn	25	98.907	ت ت	43	186.21	28	75	(292)	Uns	107							
	٥	ViB										51.996	ပံ	24	95.94	ğ	42	183.85	⋧	74	(592)	Unh	90							
	S	ΥB											50.942	>	23	92.906	ź	4	180.95	Ta	73	(292)	Ha	105						
	4	Ŋ													91.224			178.49	Ħŧ	72	(261)	R	2							
	2	118			,							44.956	လိ	7	88.906	>	2	138.91	* "	57	(227)	**Ac	68							
	2	≦				9.012	36	4	24:305		12	40.078	ర్	2	87.62	Sr	38	137.33	Вя	56	226.03	Ra	88							
	-	≤	1.008	=	-	6.941	<u>:</u> 5		22.990	Z Z	= .	39.098	×	2	85.468	Rb	37	132.91	ű	55	223	J.	81							
		PERIODS		_			77			n			4			ĸ			9			۲								

88 F F 88	 		
Ho 67	(252)	8 6 8 6 8 6	flife.
Dy 66	(251)	ت \$ ت	gest hal
Tb	(247)	9.7.	the lon
Gd Gd	(247)	٤	ope will
69 Eq.	(243)	95 -	The isot
Sm 62	(244)	7 8	umber o
Pm 64	237.05	25	mass m
28	238.03	2 %	cales the
Pr 59	231.04	F. 12	() indi
្តំប៉ុន	232.04	3 8	
			-

*Lanthanide Series

**Actinide Series

73.04 70 70 70 (259) No

7m 7m 69 (258) Md

General data and fundamental constants

Quantity ·	Symbol	Value
Speed/of light	c	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	е	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻³³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
•		6.2364 X 10 L Torr K-1 mol-1
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X-10 ⁻³⁴ J s
Avogadro constant	N_{A}	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	$\mathrm{m_{\epsilon}}$	9.109 39 X 10 ⁻¹¹ Kg
proton	$m_{_{p}}$	1.672 62 X 10 ⁻²⁷ Kg
neutron .	m_{u}	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{o} = I/c^{2}\mu_{o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε,	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ_{o}	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^2 \text{ m}^{-1}$
•		$4\pi \times 10^{-7} \mathrm{T}^3 \mathrm{J}^{-1} \mathrm{m}^3$
Magneton		
Bohr	$\mu_{\rm B} = e\hbar/2m_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ¹
nuclear	$\mu_N = e\hbar/2m_\mu$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	ge	2.002 32
Bohr radius	$a_{o} = 4\pi \epsilon_{o} \hbar/m_{e}c^{2}$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 X 10 ³
Rydberg constant	$R_{m} = m_e e^4/8h^3 c \epsilon_o^2$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	· Ğ	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV =	4.184 joules (J) 1.602 2 X 10 ⁻¹⁹ J			l erg l eV/molecule			=	1 X 10 J 96 485 kJ mol J			
Prefixes	femto	•	nano	μ micro 10 ⁻⁶	milli	centi	deci	kilo	M mega 10 ⁶	G giga 10°	

Copyright © 2012 John Wiley & Sons, Inc. All rights reserved.