

UNIVERSITY OF ESWATINI Faculty of Health Sciences Department of Environmental Health Science

BACHELOR OF SCIENCE IN ENVIRONMENTAL MANAGEMENT AND WATER RESOURCES

RE-SIT EXAMINATION PAPER JANUARY 2019

TITLE OF PAPER

WATER TREATMENT

COURSE CODE

: EHS 429

DURATION

2 HOURS

MARKS

100

INSTRUCTIONS

READ THE QUESTIONS & INSTRUCTIONS

CAREFULLY

ANSWER ANY FOUR QUESTIONS

EACH QUESTION <u>CARRIES 25</u> MARKS.

: WRITE NEATLY & CLEARLY

NO PAPER SHOULD BE BROUGHT INTO THE

EXAMINATION ROOM.

BEGIN EACH QUESTION ON A SEPARATE

SHEET OF PAPER.

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR.

QUESTION ONE (5 Marks each)

- 1A. List five objectives of chemical methods of water treatment
- 1B. Describe with the help of a chemical method a possible chemical method for the removal of ammonia.
- 1C. State whether each of these reactions are homogenous or heterogeneous
 - i. Stripping of ammonia from water using air
 - ii. Removal of water hardness by softening
 - iii. Removal of water hardness by ion exchange
 - iv. Removal of organic matter by activated carbon adsorption
- 1D. The variation of the rate of reaction for a certain reaction is shown below:

$$r = \frac{kC}{K+C}$$

- i) What is the maximum rate of reaction?
- ii) For what value of the concentration C does the maximum rate of reaction occur
- iii) What will be the order of reaction when the concentration C is very large?
- iv) What will be the order of reaction when the concentration C is small?
- 1E. If the average intensity of the UV radiation to which a sample was exposed is 20 mW/cm², determine the UV intensity measured at the water surface in a petri dish. The depth of water in the petri dish is 10 mm. Assume the absorptivity k (at $\lambda = 254$ nm) is equal to 1.3 cm⁻¹.

QUESTION TWO (25 marks and marks are indicated for each question)

- **2B.** A given activated carbon produced was found to possess a pH of 8.5. Discuss the potential of this activated carbon for the removal of organic matter in which:
 - i. The pH of the water is low...... [3 marks]
- 2C. A batch adsorption study of a given polluted water gave the data shown in the table below. If the raw water COD was 300 mg/L and the treated water COD should be restricted to 4.70 mg/L or less, determine:

 - Determine the length of time that this 80 kg activated carbon serves before it is taken out of operation because of breakthrough.

.....[6 marks]

Flask No.	Wt. of Carbon (mg) (m)	Volume in Flask (ml)	Final COD (mg/l) (C)	Wt. of Adsorbate Adsorbed (mg)	x m (mg/mg)	
1	804	200	4.70	49.06	0.061	
2	668	200	7.0	48.6	0.073	
3	512	200	9.31	48.1	0.094	
4	393	200	16.6	46.7	0.118	
5	313	200	32.5	43.5	0.139	
6	238	200	62.8	37.4	0.157	
7	Ò	200	250	0	0	

QUESTION THREE (5 marks each)

3A. The diagram shown below is a chemical structure of ion exchanger material. Which of the following statements is/are true

- a. The exchanger material is anion exchanger
- b. The sulfonic group is the ion exchnager
- c. The exchanger is strong acid exchnager
- d. The exchanger is regenerated with sodium chloride

3B. For the ions listed below, choose the correct order of preference of a cation exchanger

a.
$$Ca^{2+} > Ba^{2+} > Pb^{2+} > Cd^{2+}$$

b.
$$Cs^+ > H^+ > NH_4^+ > K^+$$

c.
$$Cu^{2+} > Co^{2+} > Zn^{2+} > Ag^{2+}$$

d.
$$SO_4^{2-} > I^- > NO_3^- > Br^-$$

3C. Which of the following statements is/are true about ion exchange process for water treatment

- a. Ion exchange is an adosprtion process
- b. Ion exchange is an absorption process
- c. Ion exchange is more favoured for the removal of inorganic compounds rather than organic compounds.
- d. Strong cation exchangers have sharp break-through curve

- **3D.** Which of the following statements is/are false about the structure of ion exchange resins:
 - a. Spherically shaped resins beads are preferable for uniformity and to avoid compaction of the resin.
 - b. Ion exchange resins with high degree of cross linking are stronger
 - c. The pH of the water has little effect on the efficiency of adsorption of ions.
 - d. The selectivity of cation exchanger is more at higher pH due to greater mobility of the cations by combining with hydroxyl ions.
- 3E. The diagram below shows the selectivity if ion 'a' over ion 'b' for three different ion exchangers, namely, 1, 2 and 3 as shown in the figure. Note that the A_s (y-axis) represent the fraction of the ions of a in solution and that of the x-axis (i.e., Ã) represents the fraction of ions a that are taken up by the resin. Which of the following statement (s) are false?

- a. Resin (1) has equal almost equal selectivity for both ions a and b.
- b. Resin 2 is more selective of ion b than ion a
- c. Resin (3) is more selective of ion (a) than ion (b)
- d. None of the above

EHS 429 RE-SIT EXAMINATION PAPER 2019 JANUARY

QUESTION FOUR (25 Marks and marks are indicated for each question)

The table below shows the results of water quality analysis of a sample of raw water intended for potable water treatment. Determine:

- i. The bicarbonate and permanent hardness in mg/L of CaCO₃ [13 Marks]
- ii. The lime and soda ash required to soften this water.[12 Marks]

Parameter	TDS	Ca	Mg	Na	K	HCO ₃	SO ₄	Cl	H ₂ CO ₃ *	pН
Unit	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	pH units
Concentration	300	65	20	15	5	200	120	25	20	7.2

QUESTION FIVE (5 marks each)

- **5A.** Compare the operating characteristics of membrane filters and granular filters in terms of:
 - i. Filtration rate
 - ii. Operating pressure
 - iii. Filter cycle duration
 - iv. Filtration mechanism
- 5B. Compare the advantages and disadvantages of:
 - i. Inside-out membrane operation and
 - ii. Outside-in membrane operations
- **5C.** Explain why cross flow filtration mode may not be useful for water treatment applications compared to the dead end mode.
- **5D.** According to the information provided on the percent rejection for MF and UF membranes in Figure Q5-1 shown below, determine the retention ratings of i) MF membrane ii) UF membrane.

Figure Q5-1: Percent rejection of MF and UF membranes

5E. List the pretreatment and post treatment requirements of reverse osmosis plants.