な ## UNIVERSITY OF SWAZILAND ## FACULTY OF HEALTH SCIENCES DEPARTMENT OF ENVIRONMENTAL HEALTH BSc DEGREE IN ENVIRONMENTAL HEALTH SCIENCES (RE-SIT EXAMINATION, JANUARY, 2019) TITLE OF PAPER : RADIOACTIVITY AND RADIATION COURSE CODE : EHS 417 **TIME** : 2HOURS TOTAL MARKS : 100 ## **INSTRUCTIONS:** - QUESTION 1 IS COMPULSORY - ANSWER ANY OTHER THREE QUESTIONS - ALL QUESTIONS ARE WORTH 25 MARKS EACH - FORMULAE AND PERIODIC TABLE ARE PROVIDED - BEGIN THE ANSWER TO EACH QUESTION IN A SEPARATE SHEET OF PAPER. DO NO OPEN THIS EXAMINATION PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR. ## **QUESTION 1** - I. For the following statements as applied in radioactivity, radiation, health and safety write whether they are True or False. - a) In the case of electromagnetic energy, the fields are composed of vector quantities. - b) A vector field is any physical quantity that takes on different values of magnitude and direction at different points in space. - c) The electric and magnetic fields are in time phase and space quadrature. - d) The radiometric system is used mainly for assessing optical radiation hazards. - e) The photometric system is used for specifying exposure limits for visible radiation and lighting requirements. - f) A nuclear reaction is when a particle penetrates and changes a nucleus. - g) If an object gains energy its mass decreases. - h) When an atom emits a beta particle, its mass number decreases by 2 and its atomic number decreases by 1. - i) The standard unit is the curie, the number of nuclear disintegrations occurring per second in 1 kg of uranium. - j) The nuclear strong force is able overcome the electrostatic force of repulsion between protons and it binds the nucleons into a package. (20 marks) II. Briefly describe ultrasonography. (5 marks) ## **QUESTION 2** i. Describe measurement of radiation. (7 marks) ii. Cesium – 137, $^{137}_{55}Cs$ is one of the radioactive wastes from a nuclear power plant or an atomic bomb explosion, emits beta and gamma radiation. Write a nuclear equation for the decay of Cesium – 137, (6 marks) iii. Describe the arrangement of electrons in an atom and the importance attached to such an arrangement. (6 marks) iv. Strontium – 90, a beta emitter, is one of many radionuclides present in the wastes of operating nuclear power plants. Write a balanced nuclear equation for the decay. (6 marks) ## **QUESTION 3** a) Describe radiation under the following headings: i) Units of Activity [3] ii) Units of Radiation Dose [3] iii) Additive Units for Radiation Dose [5] (11 marks) b) Describe gamma radiation and their use in medicine. (9 marks) c) At 1.5 m from a small source, the radiation intensity is 40 units. What is the radiation intensity at 5,6 m? (5 marks) ## **QUESTION 4** a) Describe a nuclear reaction where a uranium atom - atomic number 92 and mass number 238 loses an alpha particle. (10 marks) b) Describe the process of fission and how it goes in a nuclear reactor (8 marks) c) Describe the use of radioisotopes Iodine-131 and iodine 123 in medicine (7 marks) ## **QUESTION 5** a. Describe how a scan is produced. (4 marks) b. Briefly describe sources of radiation (5 marks) c. Briefly describe irradiation of food (6 marks) d. In the 1940s scrolls were found in the Dead Sea. Some were made up of copper and others were made of parchment, when one parchment scroll was analyzed by the carbon-14 dating method, its specific activity was found to be 0.175 Bqg⁻¹. Calculate the age of the scroll to two significant figures. (5 marks) e. Describe a Nuclear reaction. (5 marks) ## **FORMULAE** 1. $$W = \sum_{i=1}^{4} \frac{p \text{ rms(I)S}}{\rho C}$$ where $\rho C = 420 \text{ RAYLS}$ 2. SPL= $10 \log (p_1/p_0)^2$ 2. SPL= $$10 \log (p_1/p_0)^2$$ 3. NR= $$10 \log_{10} = \underline{TA_2}$$ TA₁ 4. $$SPL_t = 10 \log_{10} [\Sigma 10^{SPL/10}]$$ 5. $SWL = 10 \log W/W_0$ 5. SWL= $$10 \log W/W_0$$ 6. $$I = \frac{w}{1}$$ 5. SWL= 10 log W/W₀ 6. $$I = \frac{w}{A}$$ 7. $I = \underline{p^2}_{rms}$ or $p_{rms} = (I \rho C)^{1/2}$ ρC 8. S.I.L = $$10 \log_{10} (I/I_{ref})$$ 9. R = $\frac{S\tilde{\alpha}}{1-\tilde{\alpha}}$ 9. $$R = \frac{s\tilde{\alpha}}{1-\tilde{\alpha}}$$ 10. $$\bar{\alpha} = \underline{S_1}\underline{\bar{\alpha}_1} + \underline{S_2}\,\underline{\bar{\alpha}_2} + \dots$$ $$S_i + S_2$$ 11. SPL_t = SWL + 10 log₁₀ { $$\frac{Q}{4\pi r}$$ 2+ $\frac{4}{R}$ } 12. $$T = \frac{0.161 \text{ V}}{\text{S}\tilde{\alpha}}$$ 13. $$T = \frac{0.161 \text{ V}}{-\text{S}[\ln{(1-\tilde{\alpha})}]+4\text{mV}}$$ 14. $$\tau = \frac{p_t^2/\rho C^2}{p_i^2/\rho C^2}$$ 15. TL= $$10 \log_{10} \left[\frac{1}{T}\right]$$ 16. $$t = \frac{1}{1.21 \times 10^{-4} \text{ yr}^{-1}} \ln(\frac{0.227}{s})$$ 17. Radiation Intensity $\propto \frac{1}{d^2}$ 17. Radiation Intensity $$\propto \frac{1}{d^2}$$ # PERIODIC TABLE OF THE ELEMENTS # GROUPS | ** Actinide series | * Lanthanide series | .7 | G | en. | . 4 . | ့် ယ်နှ | N | ites
II (poli sio I | PERIODS | · . | |----------------------------|----------------------------|----------------------------|------------------------------|---------------------------|---------------------------|---------------------------|------------------|------------------------------------|---------|-----| | eries | series | (223)
87 | 132,905
C/S | 37 RS | 39,0983
K
19 | 22,990
Na
11 | 6.941
Li
3 | 1.008
H | IA | | | | | 226.025
Ra
88 | 137.33
Ba
56 | 38.53
38.53 | 40.078
Ca
20 | 24.305
Mg
12 | 9.012
Be | | λίΑ | 2 | | | | 5 (227)
**AC | 138.906
*[_a
57 | 906.88 | 44.956
Sc
21 | | | • | BIII | ω | | 232.036
Th
90 | 140.115
Ce
58 | 7 (26.7) | 178.49
Hf
72 | 91,224
Zr
40 | 47.88
Ti
22 | | | | BAI | 4 | | 231,036
Pa
91 | 140,908
Pr
59 | (262)
Ha
105 | 180.948
Ta
73 | 92.9064
Nb | 50.9415
V
23 | 井 | | | νв | 5 | | 238.029
U
92 | Nd 144.24 | (263)
Unh
106 | 183.85
W | 95.94
Mo | 51.996
24 | TRANSITION | | | AIA | 6 | | 237.048
93 D | Pm
61 45) | Uns | 186.207
Re
75 | 98.907
Tc | 54.938
Min
25 | NOIT | | | VIIB | 7 | | Pu
94 | 150.36
Sm
62 | Uno
108 | 190.2
Os | 101.07
Ru | 55.847
Fe
26 | ELEM | | | | 8 | | (243)
Am
95 | 151.96
EJU | Une | 192.22
II: | 102,906
R:h | 58.933
CO
27 | ELEMENTS | | | IIIA | 9 | | (247)
Cm
96 | 157.25
Gd | | 195.08
Pt
. 78 | 106.42
Pd - | 58.69
N:
28 | | | | | 10 | | 8 K | 158.925
Tb | | 196.967
AU : | 107.868
Ag | 83.546
Cu | | | | 18 | == | | 98
98
98 | 162.50
Dy | | 200.59
Hg
80 | 112.41
Cd | 55.39
Zn
30 | . · | | | IIB | 12 | | (252)
99 | 164.930
Ho
67 | | 204.383
T1
81 | 114,82
In
49 | 69.723
Ga | 26.982
13 | 5
5 | | IIIA | 13 | | (257)
F m | 167.26
E.T | | 2072
Pb | 118.71
Sn
50 | 72.51
22.61 | 28.0855
Si
14 | 12011
C | | IVA | 14 | | (258)
Md
101 | 168.934
Tm
69 | | 208.980
Bi ·
83 | 121.75
Sb | 74.922
AS
33 | 30.9738
P
15 | 14.007
N | | ٠VA | 15 | | 12 No | 173.04
Yb | | PO (209) | 127.60
Te | 78.96
Se | 50°5 | 15.999 | | VIV | 16 | | (260)
103 | 174,967
Lu
71 | | (210).
A.L.
85 | 126.904
I.
53. | 79.904
B1 | 35.453
17 | 18.998
FF | | ΑΊΑ | 17 | | | • | | 86 R [222) | 131.29
Xe | 36.25
36.25 | 39.948
Ar
18 | 20.180
Ne | 4,003
He
2 | VIIIA | 18 | Numbers below the symbol of the element indicates the atomic numbers. Atomic masses, above the symbol of the element, are based on the assigned relative atomic mass of ¹²C ~ exactly 12: () indicates the mass number of the isotope with the longest SOURCE: International Union of Pure and Applied Chemistry, 1. Mills, ed., Quantites, Units, and Symbols in Physical Chemistry, Blackwell Scientific Publications, Boston, 1988, pp 86-98.