

÷ ,

UNIVERSITY OF SWAZILAND

FACULTY OF HEALTH SCIENCES DEPARTMENT OF ENVIRONMENTAL HEALTH BSc DEGREE IN ENVIRONMENTAL HEALTH SCIENCES MAIN EXAMINATION, DECEMBER, 2018

TITLE OF PAPER

: RADIATION AND RADIOACTIVITY

COURSE CODE

: EHS 417

TIME

: 2HOURS

TOTAL MARKS

: 100

INSTRUCTIONS:

- QUESTION 1 IS COMPULSORY
- ANSWER ANY OTHER THREE QUESTIONS
- ALL QUESTIONS ARE WORTH 25 MARKS EACH
- FORMULAE AND PERIODIC TABLE ARE PROVIDED
- BEGIN THE ANSWER TO EACH QUESTION IN A SEPARATE SHEET OF PAPER.

DO NO OPEN THIS EXAMINATION PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

- I. Write True or False against each letter corresponding to the following statements as they apply to radiation and radioactivity
- a) The uses of laser and radio-frequency radiation in industrial, scientific, military, consumer, and medical applications are examples of natural sources and application of non-ionization radiation.
- b) Overexposure to non-ionizing radiation produces a number of serious health effects, but there are thresholds between safe exposures and over exposures
- c) Electromagnetic radiation is the propagation, or transfer, of energy through space and matter by time-varying electric and magnetic fields.
- d) Photons with energies less than 12.4 eV are considered to have sufficient energy to ionize matter, and are non-ionizing in nature.
- e) Skin effects of importance from occupational exposure include; erythema, photosensitivity, ageing and cancer.
- f) There are three skin cancers of concern; squamous cell carcinomas, basal cell carcinomas, and cutaneous malignant melanoma.
- g) The nuclear strong force is unable to overcome the electrostatic force of repulsion between protons, and it binds the nucleons into a package
- h) Electron capture does not change an atom's mass number, only its atomic number
- Positrons are particles with the mass of an electron but have a positive instead of a negative charge.
- j) Beta decay causes a nucleus to lose a neutron and gain a proton and thus decrease the neutron/proton ratio.
- k) The net effect of positron emission is to gain a neutron and lose a proton.
- l) There are five different types of ionising radiation, namely alpha (α) , beta (β) , neutrons (n), gamma (γ) .

(24 marks)

II. Define One electron volt

(1 mark)

QUESTION 2

a) Describe the difference between a biological and a health effect.

(4 marks)

b) Describe the effects of exposure to Ultraviolet Radiation to the skin

(10 marks)

c) Describe the nuclear strong force.

(4 marks)

d) By means of a balanced equation, illustrate the alpha decay of uranium-238

(7 marks)

QUESTION 3

a. Describe alpha radiation

(8 marks)

b. Describe beta radiation

(6 marks)

c. The rest mass of one helium-3 nucleus is known to be 3.0011295 u. Calculate the sum of the rest masses of its three separated nucleons. The rest mass of a proton is 1.00727252 u, and that of a neutron 1.008665 u.
 Using Einstein's equation, calculate the nuclear binding energy of the nucleus from the nuclear reaction and the energy per nucleon.

(11 marks)

QUESTION 4

i. Describe radioactive decay.

(5 marks)

ii. Cobalt -54 is a positron emitter. Write a balanced nuclear equation for its decay and also describe how a positron is made.

(12 marks)

iii. Briefly describe electron capture in the case of Vanadium – 50 nuclei.

(8 marks)

QUESTION 5

a) Distinguish between external radiation and internal radiation.

(7 marks)

b) Describe uses of radiation in industry and medicine

(6 marks)

c) DescribeRadiological Protection

(12 marks)

FORMULAE- ACOUSTIC AND HEALTH/RADIOACTIVITY AND RADIATION

1.
$$W = \sum_{i=1}^{4} \frac{p \operatorname{rms}(I)S}{\rho C}$$
 where $\rho C = 420 \text{ RAYLS}$

2. SPL =
$$10 \log (p_1/p_0)^2$$

2. SPL =
$$10 \log (p_1/p_0)^2$$

3. NR= $10 \log_{10} = TA_2$
TA₁

4. SPL_t=
$$10 \log_{10} [\Sigma 10^{SPL/10}]$$

5. SWL= $10 \log W/W_0$

5. SWL=
$$10 \log W/W_0$$

6.
$$I = \frac{w}{4}$$

6.
$$I = \frac{W}{A}$$

7. $I = \frac{p^2_{rms}}{1}$ or $p_{rms} = (I \rho C)^{1/2}$

8. S.I.L = 10 log₁₀ (I/I_{ref})
9. R =
$$\frac{S\tilde{\alpha}}{1-\tilde{\alpha}}$$

9.
$$R = \frac{S\tilde{\alpha}}{1-\tilde{\alpha}}$$

10.
$$\bar{\alpha} = \underline{S_1 \bar{\alpha}_1 + S_2 \bar{\alpha}_2 + \dots}$$

$$S_i + S_2$$

11.
$$SPL_t = SWL + 10 \log_{10} \left\{ \frac{Q}{4\pi r} 2 + \frac{4}{R} \right\}$$

12.
$$T = \frac{0.161 \text{ V}}{S\bar{\alpha}}$$

13.
$$T = \frac{0.161 \text{ V}}{-\text{S}[\ln{(1-\tilde{\alpha})}]+4\text{mV}}$$

14.
$$\tau = \frac{p_t^2/\rho C^2}{p_i^2/\rho C^2}$$

15. TL=
$$10 \log_{10} \left[\frac{1}{T}\right]$$

16.
$$t = \frac{1}{1.21 \times 10^{-4} \text{ yr}^{-1}} \ln(\frac{0.227}{s})$$

17. Radiation Intensity $\propto \frac{1}{d^2}$

17. Radiation Intensity
$$\propto \frac{1}{d^2}$$

PERIODIC TABLE OF THE ELEMENTS

GROUPS

:4	တ	O _k	4	ယ်	N.		PERIODS	
(223) F T	132,905 CS 55	85.468 Rb 37	39.0983 K 19	22,990 Na 11	6.941 Li 3	1.008 H	ΙA	-
226.025 Ra 88	137.33 Ba 56	87.62 S1 38	40.078 Ca 20	24.305 Mg 12	9.012 Be		IIA	2
(227) **AC	*La *La	39 ;	44.956 Sc 21				IIIB	3
章 天 (26)		91.224 Zr 40	47.88 Ti 22	- 1,0 1			IVB	4
(262) Ha 105	73 Ta	92.9064 Nb	50.9415 V 23	11			VΒ	5
(263) Unh 106	183.85 W	95.94 Mo 42	51,996 C r 24	ANSI			AllA	6
(262) Uns 107	186.207 Re 75	98.907 Tc	54.938 Mn 25	TRANSITION ELEMENTS			BIIA	7
(265) Uno	190.2 OS	101.07 Ru	55,847 He - 26	ELEM				8
(266). Une 109	192.22 II :	102.906 Rh .	58.933 Co 27	ENTS			VIII	9
1, 1	195.08 Pt : 78:	Pd42	58.69 Ni 28					10
	196.967 Au : 79:	107,868 Ag	63.546 Cu 29				B	11
	200.59 Hg 80	11241 Cd 48	55.39 Zn 30				IIB	12
	204.383 T1	114,82 In 49	89.723 Ga 31	26.982 Al 13	10.811 B		IIIA	13
	2072 Pb	50 Sn	32 G	28.0855 Si	. C		IVA	14
	208.980 Bi · 83	121.75 Sb 51	74,922 AS 33	30,9738 P 15	7 Z Z		·VA	15
	P ₀	127.60 Te 52	78.96 Se	32.06 32.06	15.999 B		VIA .	16
·	(210) AL 85	126.904 I. 53.	79.904 Br	35,453 CI	18.998 18.998		¥IIA	17
	Rn 85	131.29 Xe	3. 83.88	39.948 Ar 18	20.180 Ze	4.003 He	VIIIA	18

Numbers below the symbol of the element indicates the atomic numbers. Atomic masses, above the symbol of the element, are based on the assigned relative atomic mass of '2C = exactly 12:

() indicates the mass number of the isotope with the longest

Lanthanide series

** Actinide series

232.038 231.036 238.029 **Th Pa U**90 91 92

(243) **Ann**

Cm C⁽²⁴³⁾

(247) **BK** 97

98 Ω Ωξ 1251)

(252) HS 99

Fin 100

(258) Md 101

₹**N**(259)

1 T 280

168.934 **Tm** 69

140.115 Ce 58

SOURCE: International Union of Pure and Applied Chemistry, I. Mills, ed., Quantites, Units, and Symbols in Physical Chemistry, Blackwell Scientific Publications, Boston, 1988, pp 86-98.