

UNIVERSITY OF SWAZILAND Faculty of Health Sciences Department of Environmental Health Science

BACHELOR OF SCIENCE IN ENVIRONMENTAL HEALTH MAIN EXAMINATION PAPER 2019

TITLE OF PAPER

INSTRUMENTAL METHODS FOR

ENVIRONMENTAL ANALYSIS II

COURSE CODE

EHS 224

DURATION

2 HOURS

MARKS

100

:

:

:

:

INSTRUCTIONS

READ THE QUESTIONS & INSTRUCTIONS

CAREFULLY

ANSWER ANY FOUR QUESTIONS

: EACH QUESTION **CARRIES 25** MARKS.

: WRITE NEATLY & CLEARLY

NO PAPER SHOULD BE BROUGHT INTO OR

OUT OF THE EXAMINATION ROOM.

BEGIN EACH QUESTION ON A SEPARATE

SHEET OF PAPER.

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR.

QUESTION ONE

- a. Name three characteristics of inductively coupled plasma that make them suitable for atomic emission spectrophotometry. [6Marks]
- b. Describe how a deuterium lamp can be used to provide a background correction for an atomic absorption spectrum. [5Marks]
- c. At 580 nm, the λ_{max} of Fe (SCN)²⁺ has a molar absorptivity of 7.00 ×10³ Lcm⁻¹ mol⁻¹. Calculate;
 - (i) The absorbance of a 4.47×10^{-5} M solution of the complex at 580 nm, in a 1.0 cm cell
 - (ii) The absorbance of the solution in (i) in a 2.5 cm cell
 - (iii) The %T of the solution in scenarios described in (i) and (ii).

 $[3 \times 3 \text{ Marks}]$

d. Briefly describe the working principles of diffraction gratings a monochromators. [5 Marks]

QUESTION TWO

- a. Why are lines from a hollow cathode lamp generally narrower than lines emitted by atoms in a flame? [5 Marks]
- b. Differentiate between chemical and instrumental noise. [6 Marks]
- c. The absorbencies of solutions containing K₂CrO₄ (in 0.05M KOH) were measured in a 1.0 cm cell at 375 nm. The following results were obtained;

Concentration of CrO ₄ -2 M	Absorbance (a.u) at 375 nm
0.0050	0.123
0.0100	0.247
0.0200	0.494
0.0300	0.742
0.0400	0.991

Calculate the average molar absorptivity of CrO₄⁻² in Lmol⁻¹cm⁻¹.

[10 marks]

d. What is the consideration that should be made for a cell's material choice before it can be used for a particular region? [4 Marks]

QUESTION THREE

- a. A solution containing 3.92 mg/100mL of A (M_w = 335 g/mol) has a % transmittance of 65.1% in a 1.5 cm at 425 nm. Calculate the molar absorptivity of A at this wavelength. [7 Marks]
- b. A highly concentrated analyte can result in deviations from Beer's law. Give a reason(s) why this happens and suggest a corrective measure. [4 Marks]
- c. Why do qualitative and quantitative analyses often require different monochromator slit widths [6 Marks]
- d. Describe how to prepare a KBr pallet for IR spectroscopy. [8 Marks]

QUESTION FOUR

- a. Clearly illustrate transitions associated with the following regions of the electromagnetic spectrum
 - (i) Infrared
 - (ii) UV/vis

[6Marks]

- b. What is the function of the reference beam in a double beam AAS instrument?
 - [5 Marks]
- c. Why is the nebulization of liquid samples important in AAS? [3 Marks]
 - [6 Marks]

d. Draw and label hollow cathode lamp.

- e. Explain how flame temperature affects the sensitivity of a flame atomic absorption spectrophotometer. [5 Marks]

QUESTION FIVE

a. Describe an ideal detector for spectrophotometry.

[10 Marks]

b. In a table similar to the one below, match the terms on column 1 with the suitable terms on column 2.

	Column 1	Column 2
(i)	ICP atomisation	Concentration uncertainty
(ii)	Flame	Uniform cross sectional temperature
(iii)	Diffraction grating	Inert chemical environment
(iv)	Plasma	Secondary combustion zone
(v)	Instrument noise	Reflective monochromator

[10 Marks]

c. What are the implications of having a signal to noise ratio of 10 for a given signal?[5 Marks]

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	c	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	e	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10° C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
	• •	8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$h = h/2\pi$	1.054 57 X-10 ⁻³⁴ J s
Avogadro constant	N_A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	น	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	m_{ϵ}	9.109 39 X 10 ³¹ Kg
proton	m_p	1.672 62 X 10 ⁻²⁷ Kg
neutron .	m _a	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_o = 1/c^2 \mu_o$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε,	1.112 65 X 10 ⁻¹⁶ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ_{o}	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
		$4\pi \times 10^{-7} \mathrm{T}^2 \mathrm{J}^{-1} \mathrm{m}^3$
Magneton	.	
Bohr	$\mu_{\rm B} = e\hbar/2m_{\rm e}$	9,274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_N = e h/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	ge .	2.002 32
Bohr radius	$a_0 = 4\pi \epsilon_0 h/m_e c^2$	5.291 77 X 10 ¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{-} = m_0 e^4 / 8h^3 c \epsilon_0^2$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	·G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV =		joules (2 X 10		1 erg 1 eV/n	nolecul	e	=	1 X 1 96 48	5 k) mo	ļ ⁻¹
Prefixe	femte	p pico 10 ⁻¹²	n nano 10°9	μ micro 10 ⁻⁶		-		k kilo 10'	M mega 10 ⁶	G giga 10°

•	
PS	
⋽	
ွှ	
Ö	
_	ı

PERIODS		_	.~	7	v	٧	1	0	c	٤	-	2	-	* *	10.	`	<u> </u>	
ER(0))	-	7	7	*	٦		,	٥	^	10	11	12	13	14		10	77	18
1	≤	<u></u> ≤	1113	IVB	·VB	VIB	VIIB		VIIIB		113	IIB	VIII	IVA	۸۸	۷Ι٨	VIIV 1	VIIIV
	1.008	•																4.003
<u> </u>	Ξ															•		2
	_																p.	7
	6.941	9.012			•						Atomi	Atomic mass —	10.811	12.011	14.007	15.999	18.998	20.180
7	コ	. Be									Syn	Symbol _	æ ♣	ن	z	0	ţz.	'Ne
		4							•		Atomic No.	ic No.	ν Α	9	7	00	6	01.
	22.990	24:305							,				26.982	28.086	30.974	32.06	35.453	39.948
m	Ë	Mg				TRANSITIO	SITION	N ELEMENTS	ENTS		•		· Al	Si	p.	ß	ប	Ą۲
-	=	12				,				`			13	4	. 21	. 16	17	<u></u>
	39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58:69	63.546	65.39 .	69.723	72.61	74.922	78.96	79.904	83.80
4	×	ర	Sc	Τï	>	ڻ	Mn	ī, e	ပိ	Z	ű	Zu	S	ဦ	As	Se	Br	X
	6	70	21	22	23	24	25	. 26	27	28	29	30	3[32	33	34	. 35	36
	85.468	87.62	88.906	91.224	92.906	95.94	98.907	101.07	102.94	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.90	131.29
'n	Rb .	ŗ,	>	Zr	ź	Mo	٦ د	Ru	Į	Pd	Ag	C	E	Sn	Sb	Ť,	-	×
	37	3%	39	40	41	42	43	44	45	46	4,	48	49	8	51	25	53	স
-	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	[92.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
9		Ba.	* "]	Hf	T.	<u> </u>	Re	ő	1	Pt	Au	Hg	Ħ	Pb	ë	Po	At	Rn
		56	57	72	73	74	75	92	11	78	79) ©		82		.84	85	98
-	-	226.03	(227)	(261)	(292)	(263)	(292)	(265)	(266)	(267)								
7		Ra	**Ac	R	Ha	Unh	Uns	Uno	Une	Uun		•						
•		88	89	104	105	106	107 .	108	109	110								•

*Lanthanide Series

**Actinide Series

174.97 Lu 71	(260) Lr 103	
173.04 Yb 70	(259) No 102	
168.93 Tm 69	1	
167:26 - Er 68	(257) Fm 100	
164.93 .Ho	(252) Es 99	-life.
162.50 Dy 66	(25!) Cf	gesi half
158.93 Tb	(247) Bk 97	number of the isotope with the longest half-life.
157.25 Gd 64		ope with
151.96 Eu 63	(243) Am 95	the isot
150.36 Sm 62	(244) Pu . 94	umbèr o
(145) Pm 61	237.05 Np 93	<i>ท</i> สรร
144.24 Nd 60	238.03 U 92	cates the r
140.91 Pr 59	Pa U P28.0	() indi
140.12 Cc 58	232.04 Tlı 90	