

UNIVERSITY OF SWAZILAND Faculty of Health Sciences Department of Environmental Health Science

DEGREE IN ENVIRONMENTAL HEALTH SCIENCES

RE-SIT EXAMINATION PAPER 2019

TITLE OF PAPER

: INSTRUMENTAL METHODS FOR

ENVIRONMENTAL ANALYSIS I

COURSE CODE

: EHS209

DURATION

: 2 HOURS

MARKS

: 100

INSTRUCTIONS

READ THE QUESTIONS & INSTRUCTIONS

CAREFULLY

: ANSWER ANY FOUR QUESTIONS

: EACH QUESTION <u>CARRIES 25</u> MARKS.

: WRITE NEATLY & CLEARLY

NO PAPER SHOULD BE BROUGHT INTO OR

OUT OF THE EXAMINATION ROOM.

: BEGIN EACH QUESTION ON A SEPARATE

SHEET OF PAPER.

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR.

QUESTION ONE

- a. What is 'column efficiency' in gas chromatography? How is its value influenced by 'loading' of the column, N (number of theoretical plates) and H (height of plate)? What other factors influence it? [8 Marks]
- State the advantages and disadvantages of open tubular columns over packed columns used for GC analysis and outline the structural differences between these two columns
 [7 Marks]
 - c. In a chromatographic analysis of a mixture of chlorinated pesticides, in which a 2.0 m long column was used, a peak with retention time t_r, of 8.68 min and a baseline width of 0.36 min, was identified as dieldrin.
 - (i) Calculate N and H for this column [6 Marks]
 - (ii) Determine the capacity factor for dieldrin if the dead time, t_m, for the column is 0.30 min. [4 Marks]

QUESTION TWO

- a. Distinguish between the following terms;
 - (i) Precision and accuracy.
 - (ii) Precision and bias.

[4 Marks]

- b. Why is sample pre-treatment necessary before carrying out the actual analysis on
 a given sample? Give four examples of pre-treatment steps often employed in
 analytical laboratories. [8 Marks]
- c. Why should the chemical environment of a sample be properly controlled during analysis? Give one such control measure that could be taken to assure accuracy of obtained data.
 [4 Marks]

d.	State sequentially, the steps that should be followed in	solving a given analytical
	problem (i.e. in the analysis of a given sample).	[9 Marks]

QUESTION THREE

- a. Define the following terms;
 - (i) Dynamic range
 - (ii) Detection limit
 - (iii) Systematic error
 - (iv) Sensitivity
 - (v) Outlier

[10 Marks]

b. What are the properties of an ideal stationary phase of a GC column

[9 Marks]

c. Discuss the key assumptions necessary for the use of standard addition calibration method. [6 Marks]

QUESTION FOUR

a. Give three advantages of thin layer chromatography over paper chromatography.

[3 Marks]

- b. For TLC;
 - (i) Give two examples each of stationary phase and mobile phase [4 Marks]
 - (ii) What stationary phase would be used for a polar compound and a weakly polar compound? [2 Marks]
- c. Briefly describe the procedure for chromatogram development and detection of analyte spots in TLC. [6 Marks]
- d. Define R_f value for TLC.

[2 Marks]

e. Using a diagram, illustrate how the R_f value can be measured.

[4 Marks]

EHS209 RESIT EXAMINATION PAPER JANUARY 2019

f. Give four factors that influence the Rf value of a compound

[4 Marks]

QUESTION FIVE

a. The distribution constant of analyte X between n-Hexane and water is 8.9. Calculate the concentration of X remaining in the aqueous phase after 50.0 mL of 0.200 M X is treated by extraction with three 20 mL portions of n-Hexane.

[12 Marks]

- b. What is meant by the term "sample matrix effect"? How can this effect be corrected? [6 Marks]
- c. Explain why the drying step is essential in sample preparation of biological samples for metal analysis. [4 Marks]
- d. In solvent extraction, what does a distribution coefficient of 1 mean?

[3 Marks]

General data and fundamental constants

Quantity .	Symbol	Value
Speed of light	С	2.997 924 58 X 10 ^a m s ⁻¹
Elementary charge	e	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10° C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_{\lambda}k$	8.314 51 J K ⁻¹ mol ⁻¹
	• •	8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K-1 mol-1
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$h = h/2\pi$	1.054 57 X-10 ⁻³⁴ J s
Avogadro constant	N _A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	m_e	9.109 39 X 10 ⁻³¹ Kg
· proton	m_p	1.672 62 X 10 ⁻²⁷ Kg
neutron .	m,	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{o} = 1/c^{2}\mu_{o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
•	4πε,	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ_{o}	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
-		$4\pi \times 10^{-7} \text{T}^2 \text{J}^{-1} \text{m}^3$
Magneton		
Bohr	$\mu_{\rm B} = e\hbar/2m_{\rm c}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_N = eh/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	ge	2.002 32
Bohr radius	$a_0 = 4\pi \epsilon_0 \hbar/m_e c^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{} = m_e^4/8h^3c\epsilon_e^2$	$1.09737\mathrm{X}10^7\mathrm{m}^{-1}$
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	·G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV =		joules (2 X 10		1 erg 1 eV/n	nolecul	e	=	1 X 10 ⁻⁷ J 96 485 kJ mol ⁻¹				
Prefixes	f femto 10 ⁻¹⁵	p pico 10 ⁻¹²	n nano 10-9	micro	milli	c centi 10 ⁻²	deci	k kilo 10³	M mega 10 ⁶	G giga 109		

٠.	İ
PS	I
_	I
GK0	ŀ
_	Į

	15 16 17 18	VA VIA VIA V		2		11 14.007 15.999 18.998 20.180	NON	7	30.974 32.06	P S CI	15 16 17	74.922 78.96 79.904	As Se	33 34 . 35	121.75 127.60 126.90	Sb Te	51 52 53	208.98 (209) (210)	Bi Po At Ru	83 .84	1 2 1	
	13 14					10.811 12.01			26.982 28.086		13 14	69.723 72.61		31 32		In Sn	49 50	╁	TIPP		4	
:	11 12	IB IIB				Atomic mass	Symbol	Atomic No.	•			63.546 65.39.		29 30 .	7	Ag Cd	47 48	 	Au Hg	_	-	
2	10											58:69		28	ļ	Pd /		┼	Pt 4		╄	
GKUUFS	6	VIIIB						•		EMENTS		47 58.933	ີ - -		<u> </u>							
	7 8	VIIB								TRANSITION ELEMENTS		54.938 55.847	Mn Fe	25 . 26	_	Tc Ru		ļ	Re Os		_	-
	9	. VIB								TRANSI		51.996	<u>ე</u>			Mo			<u> </u>		_	•
	5	-VB										- 3	>			Ź			Ta		(262)	-
•	4	3 IVB									į	6 47.88		-	6 91.224		-	1 178.49		_	(261)	_
		IIIB					<u>.</u>		82			4	Sc		88.906			138.91		\dashv	(227)	
	7	≦					Be.	4		Mg.	12	4	^స	-	87.62	·-	_	137.33	Ва	56	226.03	1
			1,008	Π	-	6.941	ゴ [,]	4	22.990	Z :	=	39.098	*	6	85.468	125	37	132.91	ర	55	223	
		PERIODS		:			7			tt)			4			(C)			9			

() indicates the mass number of the isotope with the longest half-life.