

UNIVERSITY OF SWAZILAND Faculty of Health Sciences Department of Environmental Health Science BACHELOR OF SCIENCE IN ENVIRONMENTAL HEALTH

MAIN EXAMINATION PAPER 2018

TITLE OF PAPER

CHEMISTRY FOR HEALTH

SCIENCES

COURSE CODE

EHS111

DURATION

2 HOURS

MARKS

100

:

INSTRUCTIONS

READ THE QUESTIONS & INSTRUCTIONS

CAREFULLY

ANSWER ANY FOUR QUESTIONS

: EACH QUESTION <u>CARRIES 25</u> MARKS.

: WRITE NEATLY & CLEARLY

NO PAPER SHOULD BE BROUGHT INTO OR

OUT OF THE EXAMINATION ROOM.

: BEGIN EACH QUESTION ON A SEPARATE

SHEET OF PAPER.

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR.

EHS111 MAIN EXAMINATION PAPER DECEMBER 2018

OUESTION OF	VE

a.	The element X has three nat	urally occurring isotopes.	The masses ((amu) an	ıd %
	abundances of the isotopes ar	e given in the table below	. The average	atomic 1	mass
	of the element is	amu.			

Isotope	Abundance (%)	Mass (amu)
15X	28.60	15.33
17x	13.30	17.26
16x	58.10	18.11

[6 Marks]

b. State the first law of thermodynamics.

- [3 Marks]
- c. Osmium has a density of 22.6 g/cm³. The mass of a block of osmium that measures 1.01 cm \times 0.233 cm \times 0.648 cm is _____ g. [4 Marks]
- d. An iron mine produces 1.67 x 10⁴ tons of raw ore per day. If the ore is 26.39% elemental iron, the mine produces _____ pounds of elemental iron per year. (Assume the mine operates 365 days per year.) [6 Marks]
- e. Given the following reactions

$$CaCO_3$$
 (s) \rightarrow CaO (s) + CO_2 (g) $\Delta H = 178.1 \text{ kJ}$

C (s, graphite) + O₂ (g)
$$\rightarrow$$
 CO₂ (g) Δ H = -393.5 kJ

the enthalpy of the reaction;

$$CaCO_3(s) \rightarrow CaO(s) + C(s, graphite) + O_2(g)$$

[6 Marks]

QUESTION TWO

a.

- A reaction that is spontaneous has a _____. (i)
- When a system is at equilibrium, the _____ (ii)
- (iii) The thermodynamic quantity that expresses the degree of disorder in a
- (iv) The phrase "like dissolves like" refers to the fact that

EHS111 MAIN EXAMINATION PAPER DECEMBER 2018

		Page 3 of 6
		$i)Cr_2O_7^{2-} + Fe^{2+} \longrightarrow Cr^{3+} + Fe^{3+} $ [3 × 4 Marks]
		$MnO_4^- + Br^- \rightarrow Mn^{2+} + Br_2$ $O(N^- + Fe^{3+} \rightarrow CNO^- + Fe^{2+})$
		21
	reaction	
		ng agents and assign oxidation numbers of all atoms involved in the redox
b.	` ,	ich of the following redox reaction equations, identify oxidizing and
	(iii)	S^{2} [2×3 Marks]
	(ii)	I-
a.	(i)	Mn ⁴⁺
QUES a.		THREE the full electron configuration of the following ions
OHEC	TTON	THE
t		e K_a of hypochlorous acid (HClO) is 3.0×10^{-8} at 25.0°C. Calculate the pH a 0.0335 M hypochlorous acid solution. [5 Marks]
	. m	Wfl-wi-sla-san-sid (Irolo) to 2 and 2 and 2 and 3 and 3
		[2 × 10 Marks]
	(x)	Brontsed-Lowry base is a and has a
	(ix)	A coordinate covalent bond is
		electronegativity
	(viii)	A nonpolar bond will form between two atoms of
	,	because
	(vii)	Chlorine is much more apt to exist as an anion than is sodium. This is
		examples of elements that are gas, liquid, and solid at room temperature.
	(vi)	Of all the groups in the periodic table, only group contains
		valence electrons, respectively.
	(v)	The halogens, alkali metals, and alkaline earth metals have, and

c. Silver nitrate and aluminum chloride react with each other by exchanging a	nions:
---	--------

$$3AgNO_3$$
 (aq)+ $AlCl_3$ (aq) $\rightarrow Al(NO_3)_3$ (aq) + $3AgCl$ (s)

What mass in grams of AgCl is produced when 4.22 g of AgNO₃ react with 7.73 g of AlCl₃? [7 Marks]

QUESTION FOUR

- a. A compound was found to contain 90.6% lead (Pb) and 9.4% oxygen. The empirical formula for this compound is ______. [7 Marks]
- b. The pH of a 0.60 M aqueous solution of formic acid, HCHO₂, at 25.0°C is 1.98.

 What is the value of K_a for formic acid? [6 Marks]
- c. A certain alcohol contains only three elements, carbon, hydrogen, and oxygen. Combustion of a 30.00 gram sample of the alcohol produced 57.30 grams of CO₂ and 35.22 grams of H₂O. What is the empirical formula of the alcohol? [9 Marks]
- d. With reference to enthalpy changes, what does the term "standard conditions" mean? [3 Marks]

QUESTION FIVE

a. Solid aluminum and gaseous oxygen react in a combination reaction to produce aluminum oxide:

$$4Al(s) + 3O_2(g) \rightarrow 2Al_2O_3(s)$$

In a particular experiment, the reaction of 2.5 g of Al with 2.5 g of O₂ produced 3.5 g of Al₂O₃. What is the % yield of the reaction?

[9 Marks]

b. Use the table below to answer the questions that follow.

Thermodynamic Quantities for Selected Substances at 298.15 K (25 °C)

Substance	$\Delta H^{o}f(kJ/mo)$	l) ΔG ^o f (kJ/mol)	S (J/K-mol)
Calcium		•	
Ca (s)	0	0	41.4
CaCl ₂ (s)	-795.8	-748.1	104.6
Ca2 ⁺ (aq)	226.7	209.2	200.8
Chlorine			
Cl ₂ (g)	0	0	222.96
Cl- (aq)	-167.2	-131.2	56.5
Oxygen			
O ₂ (g)	0	0	205.0
H ₂ O (l)	-285.83	-237.13	69.91
Phosphorus			
P ₂ (g)	144.3	103.7	218.1
PCl ₃ (g)	- 288.1	-269.6	311.7
POCl ₃ (g)	-542.2	-502.5	325
Sulfur			
S (s, rhomb	ic) 0	0	31.88
$SO_2(g)$	-269.9	-300.4	248.5
SO ₃ (g)	-395.2	-370.4	256.2

(i) The value of ΔS° for the oxidation of solid elemental sulfur to gaseous sulfur trioxide,

2S (s, rhombic) +
$$3O_2(g) \rightarrow 2SO_3(g)$$

is _____ J/K' mol.

(ii)The value of ΔS° for the decomposition of gaseous sulfur dioxide to solid elemental sulfur and gaseous oxygen,

$$SO_2(g) \rightarrow S(s, rhombic) + O_2(g)$$

is _____ J/K· mol.

EHS111 MAIN EXAMINATION PAPER DECEMBER 2018

(iii) The value of ΔS° for the formation of POCl3 from its constituent elements,

es
<4 Marks]

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	¢	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	e .	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
	• •	8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	\mathbf{h}	6.626 08 X 10 ⁻³⁴ J s
•	$\hbar = h/2\pi$	1.054 57 X-10 ⁻³⁴ J s
Avogadro constant	N_{A}	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	Ų	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	$\mathbf{m}_{\mathbf{c}}$	9.109 39 X 10 ⁻³¹ Kg
proton	m_{p}	1.672 62 X 10 ⁻²⁷ Kg
neutron .	$\mathbf{m}_{\mathbf{n}}$	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{o} = 1/c^{2}\mu_{o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
•	4πε,	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ_{o}	$4\pi \times 10^{-7} \mathrm{J}\mathrm{s}^2\mathrm{C}^{-2}\mathrm{m}^{-1}$
	,	$4\pi \times 10^{-7} \mathrm{T}^2 \mathrm{J}^{-1} \mathrm{m}^3$
Magneton	·	
Bohr	$\mu_{\rm B} = e\hbar/2m_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_N = e\hbar/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	ge	2.002 32
Bohr radius	$a_o = 4\pi \epsilon_o \hbar/m_e c^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{\star\star} = m_e e^4 / 8h^3 c \epsilon_e^2$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	·G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

l cal l eV	=		oules (2 X 10		l erg l eV/n	nolecul	e	=	1 X 10 ⁻⁷ J 96 485 kJ mol ⁻¹		- 1
Prefi	xes	f femto 10 ⁻¹⁵	p pico 10 ⁻¹²	n nano 10-9	μ micro 10 ⁻⁶	milli	c centi 10 ⁻²		k kilo 10³	M mega 10 ⁶	G giga 10°

	18	VIII/	4.003	lle.	7	20.180	S.	9.	39.948	Ą۲	<u>8</u>	83.80	꿏	36	131.29	×	ᄶ	(222)	Rn	86		-																	
	17	VIIA		•	-	18.998	[ציי	6		ប	1.2	79.904	Br	-	126.90		52	(210)	Αŧ	85																			
	16	VIA L	٠			15.999	0	œ	32.06	S	91	78.96	Se	34	127.60	Ţ,	52	(209)	Po	.84																			
•	15	VA				14.007	Z	7	30.974	P4	15	74.922	As	33	121.75.	Sp	51.	208.98	ä	83																			
	14	IVA	•			12.011	ن	9	28.086	S	4	72.61	ဗီ	32	118.71	Sn	20	207.2	. Pb	82																			
	13	HIA				10.811	e A	٠ •	26.982	· Al	13	69.723	ខ្ច	31	114.82	Tu.	49	204.38	H	81																			
	12	IIB				Atomic mass	Symbol —	Atomic No.	•			65.39 .	Zu	30	112,41	g	. 48	200.59	Hg	80		•																	
:	11	13						Atomí	Syn	Atom				-63.546	ű	53	107.87	Ag	47	196.97	Ąπ	79																	
٠.	10												١	58.69	Z	28	106.42	Pđ	46	195.08	Pŧ	78	(267)	Uun	110														
GROUPS	6	VIIIB						•		N L N	TRANSITION ELEMENTS	58.933	ပိ	27	102.91	12	45	192.22	Ir	77	(392)	Une	109																
G	8									J T.T. T.M.		55.847	ĭ,e	. 26	101.07	Ru	44	190.2	Os	76	(592)	Uno	108																
	7	VIIB								SITION		54.938	Mn	22	98.907	٦̈	43	186.21	Re	75	(292)	Uns	107 .																
	9	VIB																					717 A CI T	Y TOTAL	51.996		72	95.94	Mo	42	183.85	À	74	(597)	Unh	106			
	2	чB																													•						50.942	>	23
	4	IVB														<u></u>			Zr	40	178.49	Hf	72	(361)	Rf	104													
	3	1113										44.956	Š	21	88.906	>	39	138.91	*La	57	(227)	**Ac	89																
	2	Š				9.012	. Be	4	┼		12	40.078		20	ļ	Ş	38	137.33	Ва	56	226.03	Ra	88																
	_	<u> </u>	1.008	11	_	6.941	ដ	-	22.990	Z	=	39.098	×	18	85.468	75	37	132.91	Ű	55	223	ī,	87																
		PERIODS		<u> </u>			7			"			4			ν,	;		9			7																	

*Lanthanide Series
**Actinide Series

174.97	Ľ	71	(260)	ュ	103	
173.04	Хþ	20	(259)	S _S	102	
168.93	Tm	69	(258)	Md	101	
167-26	Er	89	(257)	Fm	100	
164.93	.Ho	.67	(252)	Es	66	life.
162.50	Dy	. 99	(251)	೮	86	gest half
158.93	Tb	. 65	(247)	Bk	97	the lon
157.25	gg	64	(247)	CE	96	number of the isotope with the longest
151.96	Eu	S	(243)	Am	95	The isof
150.36	Sm	62	(244)	Pu .	94	umber of
(145)	Pm	19	237.05	Z	93,	ואמצצ ו
144.24	Z	09	238.03	Þ	92	cates the
40.12 140.91 144.2	Pr	.59	232.04 231.04 238.0	Pa	16	() indi
140.12	ပိ	- 85	232.04	Ę	06	