

UNIVERSITY OF SWAZILAND

FACULTY OF HEALTH SCIENCES DEPARTMENT OF ENVIRONMENTAL HEALTH BSc DEGREE IN ENVIRONMENTAL HEALTH SCIENCES MAIN EXAMINATION, DECEMBER, 2018

TITLE OF PAPER

: RADIATION AND RADIOACTIVITY

COURSE CODE

: EHM 417

TIME

: 2HOURS

TOTAL MARKS

: 100

INSTRUCTIONS:

- QUESTION 1 IS COMPULSORY
- ANSWER ANY OTHER THREE QUESTIONS
- ALL QUESTIONS ARE WORTH 25 MARKS EACH
- FORMULAE AND PERIODIC TABLE ARE PROVIDED
- BEGIN THE ANSWER TO EACH QUESTION IN A SEPARATE SHEET OF PAPER.

DO NO OPEN THIS EXAMINATION PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

- I. Write True or False against each letter corresponding to the following statements as they apply to radiation and radioactivity
- a) The uses of laser and radio-frequency radiation in industrial, scientific, military, consumer, and medical applications are examples of natural sources and application of non-ionization radiation.
- b) Overexposure to non-ionizing radiation produces a number of serious health effects, but there are thresholds between safe exposures and over exposures
- c) Electromagnetic radiation is the propagation, or transfer, of energy through space and matter by time-varying electric and magnetic fields.
- d) Photons with energies less than 12.4 eV are considered to have sufficient energy to ionize matter, and are non-ionizing in nature.
- e) Skin effects of importance from occupational exposure include; erythema, photosensitivity, ageing and cancer.
- f) There are three skin cancers of concern; squamous cell carcinomas, basal cell carcinomas, and cutaneous malignant melanoma.
- g) The nuclear strong force is unable to overcome the electrostatic force of repulsion between protons, and it binds the nucleons into a package
- h) Electron capture does not change an atom's mass number, only its atomic number
- Positrons are particles with the mass of an electron but have a positive instead of a negative charge.
- j) Beta decay causes a nucleus to lose a neutron and gain a proton and thus decrease the neutron/proton ratio.
- k) The net effect of positron emission is to gain a neutron and lose a proton.
- l) There are five different types of ionising radiation, namely alpha (α) , beta (β) , neutrons (n), gamma (γ) .

(24 marks)

II. Define One electron volt

(1 mark)

QUESTION 2

a) Describe the difference between a biological and a health effect.

(4 marks)

b) Describe the effects of exposure to Ultraviolet Radiation to the skin

(10 marks)

c) Describe the nuclear strong force.

(4 marks)

d) By means of a balanced equation, illustrate the alpha decay of uranium-238

(7 marks)

QUESTION 3

a. Describe alpha radiation

(8 marks)

b. Describe beta radiation

(6 marks)

c. The rest mass of one helium-3 nucleus is known to be 3.0011295 u. Calculate the sum of the rest masses of its three separated nucleons. The rest mass of a proton is 1.00727252 u, and that of a neutron 1.008665 u.

Using Einstein's equation, calculate the nuclear binding energy of the nucleus from the nuclear reaction and the energy per nucleon.

(11 marks)

QUESTION 4

i. Describe radioactive decay.

(5 marks)

ii. Cobalt -54 is a positron emitter. Write a balanced nuclear equation for its decay and also describe how a positron is made.

(12 marks)

iii. Briefly describe electron capture in the case of Vanadium – 50 nuclei.

(8 marks)

QUESTION 5

a) Distinguish between external radiation and internal radiation.

(7 marks)

b) Describe uses of radiation in industry and medicine

(6 marks)

c) DescribeRadiological Protection

(12 marks)

FORMULAE- ACOUSTIC AND HEALTH/RADIOACTIVITY AND RADIATION

1.
$$W = \sum_{i=1}^{4} \frac{p \text{ rms(I)S}}{\rho C}$$
 where $\rho C = 420 \text{ RAYLS}$
2. SPL = $10 \log (p_1/p_0)^2$

2. SPL =
$$10 \log (p_1/p_0)^2$$

2. SPL =
$$10 \log (p_1/p_0)^2$$

3. NR= $10 \log_{10} = \underline{TA_2}$
TA₁

4.
$$SPL_t = 10 \log_{10} [\Sigma 10^{SPL/10}]$$

5. $SWL = 10 \log W/W_0$

5. SWL=
$$10 \log W/W_0$$

6.
$$I = \frac{w}{4}$$

6.
$$I = \frac{w}{A}$$

7. $I = \frac{p^2_{rms}}{\rho C}$ or $p_{rms} = (I \rho C)^{1/2}$

8. S.I.L = 10 log₁₀ (I/I_{ref})
9. R =
$$\frac{S\hat{\alpha}}{1-\hat{\alpha}}$$

9. R =
$$\frac{S\tilde{\alpha}}{1-\tilde{\alpha}}$$

10.
$$\bar{\alpha} = \underline{S_1}\bar{\alpha}_1 + \underline{S_2}\bar{\alpha}_2 + \dots$$

$$S_i + S_2$$

11. SPL_t = SWL + 10 log₁₀ {
$$\frac{Q}{4\pi r} 2 + \frac{4}{R}$$
}

12.
$$T = \frac{0.161 \text{ V}}{S\bar{\alpha}}$$

13.
$$T = \frac{0.161 \text{ V}}{-\text{S}[\ln{(1-\bar{\alpha})}]+4\text{mV}}$$

14.
$$\tau = \frac{p_t^2/\rho C^2}{{p_i}^2/\rho C^2}$$

15. TL=
$$10 \log_{10} \left[\frac{1}{7} \right]$$

16.
$$t = \frac{1}{1.21 \times 10^{-4} \text{ yr}^{-1}} \ln(\frac{0.227}{s})$$

17. Radiation Intensity $\propto \frac{1}{d^2}$

17. Radiation Intensity
$$\propto \frac{1}{d^2}$$

PERIODIC TABLE OF THE ELEMENTS

GROUPS

• Lanthanide series • Actinide series	7 6	- OF	. 3 -1 -3	ယ်	N	eter	PERIODS		The Table
series	132,905 CS 55 (223) FT 87	85.468 Rb	39.0983 K	22.990 Na 11	6.941 Li 3	1.008 H	IA.	1	
	137.33 Ba Ba 226.025 Ra 88	87.62 Sr	40.078 Ca	24,305 Mg 12	9.012 Be		ΙΙΑ	2	•
	*La *La 57 5 (227) **AC 89	39 ;	44.956 SC 21				8111	3	÷
40.115 Ce 32.038 Th	72.45 72.45 72.45 72.45		47.88 Ti				IVB	4	
140.908 Pr 59 231.036 Pa	180.948 Ta 73 (262) Ha 105	92.9064 Nb	50.9415 V 23	ਜ			ВА	Çī	Эe
144.24 Nd 80 238.029	183.85 W 74 (283) Unth	95.94 Mo 42	51,996 C1	TRANSITION			BIA	6	RIOL
Pm 237.048 Np	186.207 Re 75 (262) Uns	98.907 Tc	Mn 886.73	TION			AttR	7	PERIODIC TABLE OF THE
150,36 Sm 62 (244) Pu	190,2 Os 76 (265) Uno 108	101.07 Ru	55.847 Fe 26	ELEMENTS				8	ABLE ABLE
151.96 Eu 63 (243) Am	192:22 ID 77 (266) Une 109	102.906 R:h 45	27 OO SEG 85	ENTS			VIII	9	LE OF T
157.25 Gd 84 (247) Cm	195.08 Pt. - 78	106.42 Pd	58.69 Ni 28					10	
158.925 Tb 85 (247) Bk	196.967 Au 79:	107.868 Ag	83.546 Cu				ВI	11	ELEMENTS
182.50 Dy 65 26 27	200.59 Hg 80	11241 Cd 48	55.39 Zn 30				IIB	12	ENTS
184.930 Ho 67: (252) E.S	87 TI	114,82 In 49	91.723 31.23	26.982 Al 13	10.811 B 5		IIIA	13	
167.26 E1 68 (257) Fm	207.2 Pb 82	50 118.71	# G 72.61	28.0855 Si	. C		AAt	14	-
168.934 Tm 69 (258) Md	208.980 Bi 83	121.75 Sb 51	74,922 AS 33	30.9738 P 15	14.007 N		· VA	15	
773.04 Yb 70 No	Po (209)	127.60 Te	78.96 Se		15.999		VIA .	16	
174,967 Lui 71 (260) Lr	(210) A.E. 85	= ==	79.904 Br	35.453 7)	18.998 F		VIIA	17	
	R 222)	131.29 Xe .54	33.80 8 7 83.80	39.948 Ar 18	20.180 Ne	4.003 He	AllIA	18	

Numbers below the symbol of the element indicates the atomic numbers. Atomic masses, above the symbol of the element, are based on the assigned relative atomic mass of ¹²C ~ exactly 12: () indicates the mass number of the isotope with the longest

SOURCE: International Union of Pure and Applied Chemistry, I. Mills, ed., Quantitles, Units, and Symbols in Physical Chemistry, Blackwell Scientific Publications, Boston, 1988, pp 86-98.