UNIVERSITY OF SWAZILAND ### FACULTY OF HEALTH SCIENCES DEPARTMENT OF ENVIRONMENTAL HEALTH BSc DEGREE IN ENVIRONMENTAL HEALTH SCIENCES MAIN EXAMINATION, DECEMBER, 2018 TITLE OF PAPER : RADIATION AND RADIOACTIVITY **COURSE CODE** : EHM 417 TIME : 2HOURS **TOTAL MARKS** : 100 ### **INSTRUCTIONS:** - QUESTION 1 IS COMPULSORY - ANSWER ANY OTHER THREE QUESTIONS - ALL QUESTIONS ARE WORTH 25 MARKS EACH - FORMULAE AND PERIODIC TABLE ARE PROVIDED - BEGIN THE ANSWER TO EACH QUESTION IN A SEPARATE SHEET OF PAPER. DO NO OPEN THIS EXAMINATION PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR. ### **QUESTION 1** - I. Write True or False against each letter corresponding to the following statements as they apply to radiation and radioactivity - a) The uses of laser and radio-frequency radiation in industrial, scientific, military, consumer, and medical applications are examples of natural sources and application of non-ionization radiation. - b) Overexposure to non-ionizing radiation produces a number of serious health effects, but there are thresholds between safe exposures and over exposures - c) Electromagnetic radiation is the propagation, or transfer, of energy through space and matter by time-varying electric and magnetic fields. - d) Photons with energies less than 12.4 eV are considered to have sufficient energy to ionize matter, and are non-ionizing in nature. - e) Skin effects of importance from occupational exposure include; erythema, photosensitivity, ageing and cancer. - f) There are three skin cancers of concern; squamous cell carcinomas, basal cell carcinomas, and cutaneous malignant melanoma. - g) The nuclear strong force is unable to overcome the electrostatic force of repulsion between protons, and it binds the nucleons into a package - h) Electron capture does not change an atom's mass number, only its atomic number - Positrons are particles with the mass of an electron but have a positive instead of a negative charge. - j) Beta decay causes a nucleus to lose a neutron and gain a proton and thus decrease the neutron/proton ratio. - k) The net effect of positron emission is to gain a neutron and lose a proton. - l) There are five different types of ionising radiation, namely alpha (α) , beta (β) , neutrons (n), gamma (γ) . (24 marks) II. Define One electron volt (1 mark) ### **QUESTION 2** a) Describe the difference between a biological and a health effect. (4 marks) b) Describe the effects of exposure to Ultraviolet Radiation to the skin (10 marks) c) Describe the nuclear strong force. (4 marks) d) By means of a balanced equation, illustrate the alpha decay of uranium-238 (7 marks) ### **QUESTION 3** a. Describe alpha radiation (8 marks) b. Describe beta radiation (6 marks) c. The rest mass of one helium-3 nucleus is known to be 3.0011295 u. Calculate the sum of the rest masses of its three separated nucleons. The rest mass of a proton is 1.00727252 u, and that of a neutron 1.008665 u. Using Einstein's equation, calculate the nuclear binding energy of the nucleus from the nuclear reaction and the energy per nucleon. (11 marks) ### **QUESTION 4** i. Describe radioactive decay. (5 marks) ii. Cobalt -54 is a positron emitter. Write a balanced nuclear equation for its decay and also describe how a positron is made. (12 marks) iii. Briefly describe electron capture in the case of Vanadium – 50 nuclei. (8 marks) ### **QUESTION 5** a) Distinguish between external radiation and internal radiation. (7 marks) b) Describe uses of radiation in industry and medicine (6 marks) c) DescribeRadiological Protection (12 marks) ### FORMULAE- ACOUSTIC AND HEALTH/RADIOACTIVITY AND RADIATION 1. $$W = \sum_{i=1}^{4} \frac{p \text{ rms(I)S}}{\rho C}$$ where $\rho C = 420 \text{ RAYLS}$ 2. SPL = $10 \log (p_1/p_0)^2$ 2. SPL = $$10 \log (p_1/p_0)^2$$ 2. SPL = $$10 \log (p_1/p_0)^2$$ 3. NR= $10 \log_{10} = \underline{TA_2}$ TA₁ 4. $$SPL_t = 10 \log_{10} [\Sigma 10^{SPL/10}]$$ 5. $SWL = 10 \log W/W_0$ 5. SWL= $$10 \log W/W_0$$ 6. $$I = \frac{w}{4}$$ 6. $$I = \frac{w}{A}$$ 7. $I = \frac{p^2_{rms}}{\rho C}$ or $p_{rms} = (I \rho C)^{1/2}$ 8. S.I.L = 10 log₁₀ (I/I_{ref}) 9. R = $$\frac{S\hat{\alpha}}{1-\hat{\alpha}}$$ 9. R = $$\frac{S\tilde{\alpha}}{1-\tilde{\alpha}}$$ 10. $$\bar{\alpha} = \underline{S_1}\bar{\alpha}_1 + \underline{S_2}\bar{\alpha}_2 + \dots$$ $$S_i + S_2$$ 11. SPL_t = SWL + 10 log₁₀ { $$\frac{Q}{4\pi r} 2 + \frac{4}{R}$$ } 12. $$T = \frac{0.161 \text{ V}}{S\bar{\alpha}}$$ 13. $$T = \frac{0.161 \text{ V}}{-\text{S}[\ln{(1-\bar{\alpha})}]+4\text{mV}}$$ 14. $$\tau = \frac{p_t^2/\rho C^2}{{p_i}^2/\rho C^2}$$ 15. TL= $$10 \log_{10} \left[\frac{1}{7} \right]$$ 16. $$t = \frac{1}{1.21 \times 10^{-4} \text{ yr}^{-1}} \ln(\frac{0.227}{s})$$ 17. Radiation Intensity $\propto \frac{1}{d^2}$ 17. Radiation Intensity $$\propto \frac{1}{d^2}$$ # PERIODIC TABLE OF THE ELEMENTS ## GROUPS | • Lanthanide series • Actinide series | 7 6 | - OF | . 3 -1 -3 | ယ် | N | eter | PERIODS | | The Table | |---------------------------------------|---|-----------------------------|---------------------------|---------------------------|-------------------------|-------------------|---------|----|-----------------------| | series | 132,905
CS
55
(223)
FT
87 | 85.468
Rb | 39.0983
K | 22.990
Na
11 | 6.941
Li
3 | 1.008
H | IA. | 1 | | | | 137.33
Ba
Ba
226.025
Ra
88 | 87.62
Sr | 40.078
Ca | 24,305
Mg
12 | 9.012
Be | | ΙΙΑ | 2 | • | | | *La
*La
57
5 (227)
**AC
89 | 39 ; | 44.956
SC
21 | | | | 8111 | 3 | ÷ | | 40.115
Ce
32.038
Th | 72.45
72.45
72.45
72.45 | | 47.88
Ti | | | | IVB | 4 | | | 140.908
Pr
59
231.036
Pa | 180.948
Ta
73
(262)
Ha
105 | 92.9064
Nb | 50.9415
V
23 | ਜ | | | ВА | Çī | Эe | | 144.24
Nd
80
238.029 | 183.85
W
74
(283)
Unth | 95.94
Mo
42 | 51,996
C1 | TRANSITION | | | BIA | 6 | RIOL | | Pm 237.048 Np | 186.207
Re
75
(262)
Uns | 98.907
Tc | Mn
886.73 | TION | | | AttR | 7 | PERIODIC TABLE OF THE | | 150,36
Sm
62
(244)
Pu | 190,2
Os
76
(265)
Uno
108 | 101.07
Ru | 55.847
Fe
26 | ELEMENTS | | | | 8 | ABLE
ABLE | | 151.96
Eu
63
(243)
Am | 192:22
ID
77
(266)
Une
109 | 102.906
R:h
45 | 27
OO
SEG 85 | ENTS | | | VIII | 9 | LE OF T | | 157.25
Gd
84
(247)
Cm | 195.08
Pt.
- 78 | 106.42
Pd | 58.69
Ni
28 | | | | | 10 | | | 158.925
Tb
85
(247)
Bk | 196.967
Au
79: | 107.868
Ag | 83.546
Cu | | | | ВI | 11 | ELEMENTS | | 182.50
Dy
65
26
27 | 200.59
Hg
80 | 11241
Cd
48 | 55.39
Zn
30 | | | | IIB | 12 | ENTS | | 184.930
Ho
67:
(252)
E.S | 87 TI | 114,82
In
49 | 91.723
31.23 | 26.982
Al
13 | 10.811
B
5 | | IIIA | 13 | | | 167.26
E1
68
(257)
Fm | 207.2
Pb
82 | 50 118.71 | # G 72.61 | 28.0855
Si | . C | | AAt | 14 | - | | 168.934
Tm
69
(258)
Md | 208.980
Bi
83 | 121.75
Sb
51 | 74,922
AS
33 | 30.9738
P
15 | 14.007
N | | · VA | 15 | | | 773.04
Yb
70
No | Po (209) | 127.60
Te | 78.96
Se | | 15.999 | | VIA . | 16 | | | 174,967
Lui
71
(260)
Lr | (210)
A.E.
85 | = == | 79.904
Br | 35.453
7) | 18.998
F | | VIIA | 17 | | | | R 222) | 131.29
Xe
.54 | 33.80
8 7 83.80 | 39.948
Ar
18 | 20.180
Ne | 4.003
He | AllIA | 18 | | Numbers below the symbol of the element indicates the atomic numbers. Atomic masses, above the symbol of the element, are based on the assigned relative atomic mass of ¹²C ~ exactly 12: () indicates the mass number of the isotope with the longest SOURCE: International Union of Pure and Applied Chemistry, I. Mills, ed., Quantitles, Units, and Symbols in Physical Chemistry, Blackwell Scientific Publications, Boston, 1988, pp 86-98.