

#### UNIVERSITY OF ESWATINI

# FACULTY OF HEALTH SCIENCES

# B.Sc. ENVIRONMENTAL HEALTH AND FOOD SCIENCE

# B.Sc. ENVIRONMENTAL HEALTH SCIENCE

SEMESTER I

SUPPLEMENTARY EXAM

**JANUARY 2019** 

TITLE OF PAPER:

FOOD MICROBIOLOGY

**COURSE CODE:** 

EHM 407

**DURATION:** 

2 HOURS

**INSTRUCTIONS:** 

- 1. READ THE QUESTIONS CAREFULLY.
- 2. ANSWER ANY 4 QUESTIONS.
- 3. EACH QUESTION CARRIES 25 MARKS. WHERE A QUESTION IS SUBDIVIDED INTO PARTS, THE MARK FOR EACH PART IS SHOWN IN BRACKETS.
- 4. NO PAPER SHOULD BE BROUGHT INTO THE EXAMINATION ROOM.
- 5. WRITE NEATLY AND CLEARLY
- 6. BEGIN EACH QUESTION ON A SEPARATE SHEET OF PAPER.

SPECIAL REQUIREMENTS: NONE

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR.

# **QUESTION 1**

- a. Discuss the evolution of lactic acid bacteria as probiotics. [10]
- b. Discuss the concerns associated with antibiotics in the food chain. [15]

[Total: 25 marks]

# **QUESTION 2**

- a. The Table below presents recommended sampling plans for poultry products. With reference to the table, answer the following questions.
  - i. Distinguish between 2-class and 3-class attribute sampling plans. [4 marks]
  - ii. Explain why the 2-class and 3-class plans are recommended for Salmonella and Staph. auereus, respectively. [6 marks]
  - iii. In the case of cooked poultry meat, frozen, ready to eat, the value for n=10.Explain why this is different from that of cooked poultry meat, frozen, to be re-heated before eating. [4 marks]
  - iv. As expected of a microbiological specification, what other parameter could be added to this table? [2 marks]

Sampling plans and recommended microbiological limits for poultry and poultry products

| Product                       | Test          | Plan class | n  | c | m               | M               |
|-------------------------------|---------------|------------|----|---|-----------------|-----------------|
| Cooked poultry meat, frozen;  | Staph. aureus | 3          | 5  | 1 | 10 <sup>3</sup> | 104             |
| to be reheated before eating  |               |            |    |   |                 |                 |
| (e.g., prepared frozen meals) | Salmonella    | 2          | 5  | 0 | 0               |                 |
| Cooked poultry meat, frozen,  | Staph. aureus | 3          | 5  | 1 | 10 <sup>3</sup> | 10 <sup>4</sup> |
| ready-to-eat (e.g., turkey    |               |            |    |   |                 |                 |
| rolls)                        |               |            |    |   |                 |                 |
|                               | Salmonella    |            |    |   |                 |                 |
|                               | 1             | 2          | 10 | 0 | 0               |                 |
| Dehydrated poultry products   | Salmonella    | 2          | 10 | 0 | 0               |                 |

b. Discuss the benefits of microbiological specifications to food safety. [4 marks]

c. Distinguish between 'consumer's risk' and 'producer's risk'. [5 marks]

[Total: 25 marks]

#### **QUESTION 3**

- a. Describe how microbial films in food processing equipment form. [12]
- b. Why are these films of concern in the food industry? [3]
- c. Briefly outline a method of checking the effectiveness of cleaning food contact surfaces.
  [10 marks]

[Total: 25 marks]

# **QUESTION 4**

- a. Discuss the type of food poisoning caused by the following pathogenic microorganisms, highlighting the infective dose, symptoms, and severity of the illness:
  - i. Clostridium botulinum. [5]
  - ii. Escherichia coli O157:H7. [5]
  - iii. Listeria monocytogenes. [5 marks]
- b. Describe the mode of disease causing action by the following pathogens:
  - i. Salmonella enteritidis. [5 marks]
  - ii. E. coli O104:H4. [5 marks]

[Total: 25 marks]

# **QUESTION 5**

- a. Bacteria exist in many shapes and sizes. Name three different shapes of bacterial cells. [3 marks]
- b. Difference in staining using the Gram stain shows differences in the cell wall structure of bacteria. Explain these differences and how they are used in characterising bacteria. [10 marks]
- c. Discuss the criteria that must be satisfied for a microorganism to be selected as an indicator microorganism. [12 marks]

[Total: 25 marks]

#### END OF EXAMINATION PAPER