

UNIVERSITY OF SWAZILAND

FACULTY OF HEALTH SCIENCES

B.Sc. ENVIRONMENTAL HEALTH AND FOOD SCIENCE

SEMESTER II

RE-SIT EXAM JUNE 2018

TITLE OF PAPER:

FOOD ANALYSIS

COURSE CODE:

EHS344

DURATION:

2 HOURS

INSTRUCTIONS:

- 1. READ THE QUESTIONS CAREFULLY.
- 2. ANSWER ANY 4QUESTIONS.
- 3. EACH QUESTION CARRIES 25 MARKS. WHERE A QUESTION IS SUBDIVIDED INTO PARTS, THE MARK FOR EACH PART IS SHOWN IN BRACKETS.
- 4. NO PAPER SHOULD BE BROUGHT INTO THE EXAMINATION ROOM.
- 5. WRITE NEATLY AND CLEARLY
- 6. BEGIN EACH QUESTION ON A SEPARATE SHEET OF PAPER.

SPECIAL REQUIREMENTS: NONE

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR.

QUESTION 1

- a. Write notes on the following concepts and their applications:
 - i. Ionisation suppression in Atomic Absorption Spectroscopy. [5 Marks]
 - ii. Beer-Lambert Law. [6 Marks]
 - iii. Wet oxidation. [5 Marks]
 - iv. Gradient elution [5]
 - v. Acid value. [4 Marks]

[Total: 25 marks]

QUESTION 2

- a. Explain how analytes are detected during Thin Layer Chromatography (TLC) analysis.

 [5]
- b. Explain the difference between normal phase and reversed phase HPLC [10].
- c. Briefly discuss how chromatographic column efficiency can be evaluated under the following headings:
 - i. Partition coefficient. [5]
 - ii. Resolution. [5]

[Total: 25 marks]

QUESTION 3

Explain the chemical basis of the following techniques that can be used to determine proteins in food:

- a. Kjeldahl method. [10 marks]
- b. Dumas method (N combustion). [5 marks]
- c. Biuret method. [5 marks]
- d. Lowry method. [5 marks]

[Total: 25 marks]

QUESTION 4

a. The following is an extract from the procedure for determining peroxide value in oils.
Read the procedure carefully and answer the questions that follow:

- 1. Melt any samples that are solid at room temperature by heating to a maximum of 15°C above the melting point. Filter melted fat and oil sample through filter paper to remove impurities.
- 2. Accurately weigh c.a. 5g fat or oil into each of 250ml glass stoppered Erlenmeyer Flasks. Add 30ml acetic acid and -chloroform solution and swirl to dissolve. Add 0.5ml saturated KI solution. Let stand with occasional shaking for 1 min.
- 3. Add 30ml distilled water. Slowly titrate samples with 0.1N sodium thiosulphate solution, with vigorous shaking until yellow colour is almost gone.
- 4. Add c.a. 0.5ml 1% starch solution and continue titration, shaking vigorously to release all iodine from chloroform layer, until the blue colour just disappears. Record the volume of titrant used (if <0.5ml of sodium thiosulphate solution is used, repeat the determination).
- 5. Prepare (omitting only the oil) and titrate a blank sample. Record volume of titrant used.
 - i. Indicate whether this is a gravimetric or volumetric procedure. [2 marks]
 - ii. Explain what is meant by the term "Accurately weigh..." used I step 2 above. [2 marks]
 - iii. What is the purpose of the starch solution? [2 marks]
 - iv. What is the role of the blank sample? [2 marks]
 - v. What property of the oil does this method determine? [6 marks]
- b. Proximate composition refers to analysis for moisture, ash, fat, protein, and carbohydrate.
 - i. Identify whichof these components of proximate composition areactually required on a nutrition label. [3 marks].
 - ii. Explain whyit is important to measure the non-required components quantitatively if one is developing a nutrition label. [3 marks]
 - iii. Distinguish between crude fibre and dietary fibre. [5 marks]

[Total: 25 marks]

QUESTION 5

- a. Discuss the principles involved in moisture determination using reflux distillation. [15]
- b. Discuss the potential sources of error associated with method. [10]

[Total: 25 marks]

END OF EXAMINATION