

UNIVERSITY OF SWAZILAND Faculty of Health Sciences Department of Environmental Health Science

BSc OF SCIENCE IN ENVIRONMENTAL HEALTH RESIT EXAMINATION PAPER 2018

TITLE OF PAPER

INSTRUMENTAL METHODS FOR

ENVIRONMENTAL ANALYSIS II

COURSE CODE

EHS224

DURATION

2 HOURS

MARKS

100

INSTRUCTIONS

READ THE QUESTIONS & INSTRUCTIONS

CAREFULLY

ANSWER ANY FOUR QUESTIONS

EACH QUESTION <u>CARRIES 25</u> MARKS.

WRITE NEATLY & CLEARLY

NO PAPER SHOULD BE BROUGHT INTO OR

OUT OF THE EXAMINATION ROOM.

BEGIN EACH QUESTION ON A SEPARATE

SHEET OF PAPER.

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR.

QUESTION ONE

- a. Draw and label a schematic diagram of an atomic absorption spectroscopy instrument. [5Marks]
- b. State the mathematical expression of Beer's law and give the SI units of all the parameters.
 [7 Marks]
- c. Briefly describe the working principles of diffraction gratings as monochromators. [6 Marks]
- d. The molar absorptivity for aqueous solutions of phenol at 211 nm is $6.7 \times 10^3 \text{ Lcm}^{-1}\text{mol}^{-1}$. Calculate the permissible range of phenol concentrations if transmittance is to be less than 85% and greater than 7% when the measurements are made in 1.5 cm cells. [7 Marks]

QUESTION TWO

a. Why is a hollow cathode lamp considered as a sharp line radiation source?

[4 Marks]

- Explain why compounds containing the same chromophore will have different maximum absorbance wavelengths.
 [7 Marks]
- c. Discuss the effect of a wide slit width on the resolution of a spectrophotometer and the adherence to Beer's law. Compare it with the spectral slit width.

[8 marks]

d. What are the necessary precautions that should be taken in the handling of a cuvette/cell, during a UV spectrophotometric analysis? [6 Marks]

QUESTION THREE

a. A wastewater effluent sample known to contain *para* nitrophenol (abbreviated as PNP, Mw139.11 g mol⁻¹) was analysed using UV/Vis spectrometer, in a 1.0 cm cuvette. It was found to transmit 57% of the incident light at 318 nm (PNP's maximum absorbance wavelength). If the molar absorptivity of this substance at this wavelength is 17.9 cm⁻¹g⁻¹L, what is the concentration of the substance in moles/L?

[8 Marks]

- b. Explain the term interference with regards to flames and furnaces. [6 Marks]
- c. What are the characteristics of stray radiations that cause deviations from Beer's law during spectroscopic analysis? [6 Marks]
- d. What is the function of the reference beam in a double beam AAS instrument?

[5 Marks]

QUESTION FOUR

- a. For each of the following spectral regions, suggest an appropriate monochromator and state the reasons for each choice:
 - (i) X-ray
 - (ii) Visible
 - (iii) UV
 - (iv) Microwave

[12Marks]

- b. Partial ionization of an analyte can result in deviations from Beer's law. Discuss how this happens and suggest corrective measures.
 [7 Marks]
- c. Explain how flame temperature affects the sensitivity of a flame atomic absorption spectrophotometer. [6 Marks]

QUESTION FIVE

- a. A 0.11 M solution contained in a 1.0 cm cell had a %T of 31.4% at 324.7 nm wavelength. Calculate;
 - (i) Absorbance
 - (ii) Molar absorptivity
 - (iii) The cell path that will give a %T of 20 %
 - (iv) Energy of a photon of radiation at the specified wavelength.

[12 Marks]

- b. What is the requirement for a cell's material before it can be used for a particular region?[5 Marks]
- c. Describe the procedure for preparing a KBr pallet for IR spectroscopy.

[8 Marks]

General data and fundamental constants

Quantity .	Symbol	Value
Speed of light	c	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	8	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A \epsilon$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
	**	8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K' mol-
Planck constant	h	6.626 08 X 10 ³⁴ J s
	$h = h/2\pi$	1.054 57 X-10 ³⁴ J s
Avogadro constant	N _A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	ນ ົ	1.660 54 X 10 ⁻²⁷ Kg
Mass		•
electron	m,	9.109 39 X 10 ⁻³¹ Kg
proton	m,	1.672 62 X 10 ⁻²⁷ Kg
neutron .	m _a	1,674 93 X 10 ³⁷ Kg
Vacuum permittivity	$\varepsilon_o = 1/o^2 \mu_o$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε,	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ.	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^2 \text{ m}^{-1}$
		4π X 10 ⁻⁷ T ³ J ⁻¹ m ³
Magneton		
Bohr	μ ₂ = cħ/2m _e	9.274 02 X 10 ⁷⁴ J T ¹
nuclear	$\mu_N = e N / 2m$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	ge	2.002 32
Bohr radius	$a_n = 4\pi e_n \hbar/m_e c^2$	5.291 77 X 10 ¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{-}=m_{e}^{4}/8h^{3}c\varepsilon_{e}^{2}$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	√Ğ.	6.672 59 X 10 11 N m2 Kg-2

Conversion factors

l cai = 1 eV =	4.184 joules 1.602 2 X 10	1 erg 1 eV/r	nolecul	¢ ·	=	1 X 10° J 96 485 kJ mol				
Prefixes	f p femto pico 10 ¹⁵ 10 ¹²	μ micro 10- ⁶	m · milli 10 ⁻³	centi	d deci 10 ⁻¹	.k kilo 10 ³	M mega 10 ⁶	G giga 10°		

PERIODIC TABLE OF ELEMENTS

	18	VIIIA	4.003	<u>ت</u>	~	20.180	, No	10	39.948	Ar	<u></u>	83.80	ž	36	131.29	×	×	(222)	E	22				
	1.2	VIEA		•	٠.	18.998	Ľ.	σ.	35.453	U	12	79.904	r E	×	126.90	-	S	210	At	28			•	
	16	VIA				15.999	0	PC	32.06	co	91	78.96	Š	¥	127.60	ţ	22	(203)	2	*				
	15	VA				14.007	z		30.974	۵,	15	74.922	A.S	33	121.75	Sb	2,1	208.98	ä	2				
	14	ΥΛI				12.011	υ	9	28.086	· Si	ĭ	72.61	පී	32	118.71	Sn	S	207.2	7	22		-		
	EI	IIIA				110.811	2	ادر الج	26.982	¥	2	69.723	ő	31	114.82	ı.	\$	204.38	E	=				
	12	133				Atomic mass	hol	Ş			·•	6539.	5	30	112.41	පි	48	200.59	Hg	8				
	11	18				Aromí	Symbol	Atomic No.				63,546	ខី	8	107.87	AE	47	196.97	Au	٤				
	20											58.69	Z	22	106.42	Pd	46	195.08	ᄎ	78	(267)		₽	
GROUPS	6	VIIIB								O LNA	2115	58.933	රී	11	102.91	묎	\$	192.22	4	11	(266)	Che	203	
G	œ									DI DE	recent l	55.847	2	28	101:07	Ru	\$	190.2	ő	76	(265)	Uno	80	
	7	VIIB								STNAME IS NOTTEN AS		54.938	Μ	23	706.86	Te	\$	18621	Ra	7.5	(262)	Cns	107	
	0	VIB								MY CLAL		51.996	Ċ	7	95.94	Mo	4	183.85	A	74	(263)	Unh	8	
	2	£}										50.942	>	22	92,906	ź	4	180.95	Ta	27	(292)	H	105	
	4	2										-		-	91 224			٠	H	2	(361)	R	2	
	3	=		,		_						┿-		_	88.906	>	3	138.91	*	51	(177)	** Ac	89	
	2	<u> </u>	-			5	710.7	4		_	12	-	J	8	87.62	Š	, #A	137.33	B	56	226.03	Ra	96 96	
		_≤	1.003	=	= -	1007		<u> </u>	77 995	ź	!=	39.098	×	2	85.468	Z.	37	132.91	ű	55	223	Fr	87	
		PERIODS		,			,	7		,	า		7	r		V	3			>			,	

Scrics	
lanide	
*Lant	

**Actinide Series

25. 12.	75 15 15 15 15 15 15 15 15 15 15 15 15 15	
173.04 Yb 70	(259) No 102	
168.93 Tm 69	(258) Md 101	
167.26 Er 68	(257) Fin 100	
164.93 Ho -67	(252) Es 99	-life.
162.50 Dy 66	දුරුම්	gest half
158.93 Tb	2 kg	the long
57.73 Gd 28	2 g %	ope with
151.36 171 60	(243) % III %	the isol
.50.36 Sm 52.36	24 Pu 24	umber of
문 교 의	237.05 Np 93	חומצצ זוו
14.24 Nd 60	238.03 U 92	cates the
140.91 Pr 59	231.04 Pa 91	() Indi
140.13 \$ \$ \$	232.04 Th	