

UNIVERSITY OF SWAZILAND Faculty of Health Sciences Department of Environmental Health Science

BSc IN ENVIRONMENTAL HEALTH SCIENCES

MAIN EXAMINATION PAPER 2018

TITLE OF PAPER

INSTRUMENTAL METHODS FOR

ENVIRONMENTAL ANALYSIS II

COURSE CODE

EHS224

DURATION

2 HOURS

MARKS

100

INSTRUCTIONS

READ THE QUESTIONS & INSTRUCTIONS

CAREFULLY

:

ANSWER ANY FOUR QUESTIONS

•

EACH QUESTION **CARRIES 25** MARKS.

:

WRITE NEATLY & CLEARLY

:

NO PAPER SHOULD BE BROUGHT INTO OR

OUT OF THE EXAMINATION ROOM.

:

BEGIN EACH QUESTION ON A SEPARATE

SHEET OF PAPER.

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR.

QUESTION ONE

- a. What are the functions of slits found in monochromator units in a spectroscopy instrument? [4 marks]
- b. Why are high resolution monochromators found in ICP atomic emission than in flame atomic absorption? [3 Marks]
- c. Evaluate the missing quantities in the table below. Where needed, use 166 g/mol for the molar mass of the analyte.

A	%T	<i>a</i> (cm ⁻¹ ppm ⁻¹)	<i>b</i> (cm)	Concentra	tion c
				M	ppm
(i)	44.9	0.0258	(ii)	1.35× 10 ⁻⁴	(iii)
(iv)	39.6	0.0912	(v)	(vi)	1.76

 $[3 \times 6 \text{ Marks}]$

QUESTION TWO

- a. Define the following terms.
 - (i) λ_{max}
 - (ii) Chromophore
 - (iii) Bernoulli effect
 - (iv) Plasma
 - (v) Natural broadening of spectral lines
 - (vi) Stray radiation
 - (vii) Electronic transitions
 - (viii) Matrix effect
 - (ix) Blank

Strand Grant

 $[2 \times 9 \text{ Marks}]$

b. Explain how self absorption can result in non-linearity of flame atomic emission spectrometry and why self absorption is not a problem for ICP systems.

[7 Marks]

QUESTION THREE

- a. What is the difference between atomic emission and atomic absorption instrument's operation principles? [6 Marks]
- b. What would the following affect the sensitivity of a flame atomic absorption spectrophotometer;
 - (i) Low acetylene pressure
 - (ii) Partial nebulization of sample

 $[2 \times 4 \text{ Marks}]$

- c. What are the functions of acetylene and oxidant gases pumped through the nebulization unit of a FAAS? [6 Marks]
- d. What is the function of the chopper in a single and double beam AAS instrument?
 [5 marks]

QUESTION FOUR

- a. How would the widening of slit widths affect an instrument's resolution and sensitivity?
 [6 Marks]
- b. What are the implications of having a signal to noise ratio of 4 for a given signal?

 [6 Marks]
- c. Spectrophotometric analysis of two analytes, an analyte that partially ionizes and
 a highly concentrated analyte, may cause deviation from Beer's law. Classify
 these deviations and suggest corrective measures for each. [8 Marks]
- d. For which spectral regions are diffraction gratings ideal monochromators? Give reasons for your answer.
 [5 Marks]

QUESTION FIVE

- a. Would higher analyte concentrations lead to collisional broadening of spectral lines? Explain why.
 [5 Marks]
- b. Explain why atomization efficiency in ICP systems is quite high when compared to flame systems?

 [4 Marks]

EHS224 MAIN EXAMINATION PAPER 2018 MAY

- c. Draw and label a schematic diagram of a hollow cathode lamp. [6 Marks]
- d. Why is atomic emission more sensitive to flame instability than atomic absorption? [5 Marks]
- e. Give reasons why 2,3 dichlorophenol and 2,4 dichlorophenol have different λ_{max} ? [5 Marks]

[Total: 25 marks]

General data and fundamental constants

Quantity .	Symbol	Value
Speed of light	c	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	ē	1.602 177 X 10 ¹⁵ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
	44	8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K-1 moi-1
Planck constant	h	6.626 08 X 10 ^{.14} J s
	$h = h/2\pi$	1.054 57 X-10 ³⁴ J s
Avogadro constant	N_{A}	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	ນົ	1.660 54 X 10 ⁻²⁷ Kg
Mass		,
electron	$\mathbf{m}_{\mathbf{z}}$	9.109 39 X 10 ⁻³¹ Kg
proton	m,	1.672 62 X 10 ⁻²⁷ Kg
neutron .	m_{i}	1.674 93 X 10 ³⁷ Kg
Vacuum permittivity	$\varepsilon_o = 1/c^2 \mu_a$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
•	4πε,	1.112 65 X 10 ⁻¹⁶ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ,	4π X 10 ⁻⁷ J s ² C ⁻² m ⁻¹
		4π X 10 ⁷ T ³ J ¹ m ³
Magneton		
Bohr	$\mu_s = e\hbar/2m_s$	9.274 02 X 10 ⁻²⁴ J T ¹
nuclear	$\mu_N = eiV2m$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	ge .	2.002 32
Bohr radius	$a_{r} = 4\pi e_{s} \hbar/m_{s} e^{2}$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{-}=m_{e}^{4}/8h^{3}c\varepsilon_{e}^{2}$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	- Ğ	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²
	•	

Conversion factors

1 cal = 1 eV =	4.184 joules (J) 1.602 2 X 10 ¹⁹ J	1 erg 1 eV/molecule	162 202	1 X 10 96 485	2 kg moj 3, 1	-1
Prefixes		μ m· c ano micro milli centi 0° 10° 10° 10°	d deci 10°	.k kilo 10 ³	M mega 10 ⁶	G giga 10°

PERIODIC TABLE OF ELEMENTS

	18	VIIIA	4,003	3E	2	20.180	, Z	2	39.948	Ar	82	83.80	ጀ	36	131.29	×	×	(222)	₹	8				
	11	VilA		•	• •	18.998	Ľ,	6	35.453	ប	17	79.904	ğ	35	126.90	-	53	(210)	At	æ			٠	
	91	VIA				15,999	0	80	32.06	מ	91	78.96	Š	34	127,60	ţ	52	(502)	೭	2				
	15	٨٨				14.007	z	7	30.974	مر	23	74.922	S.	33	121.75	Sb	51	208.98	ä	22				
	14	IVA			,	12.011	ပ	9	28.086		74	72.61	පී	32	118.71	Sn	50	207.2	Pb	82				
	13	IIIA				10.811		ν, <u>*</u>	26.982	¥	13	69.723	ទី	31	114.82	In	49	204.38	F	20				
	12	E				Atomic mass	abol	Atomic No.				65.39.	77	30	112.41	ខ	48	200.59	Hg	8				
	=	2				Atom	Syn	Atom				63.546	បី	23	107.87	Ag	47	196.97	Αn	79				
•	10											58.69	Z	78	106.42	Pd	46	195.08	굺	78	(292)	Uma	110	
GROUPS	6	VIIB								ENTS		58.933	රී	27	102.91	Rh	4.5	192.22	71	77	(997)	Une	601	
G	œ									RIEN		55.847	Ę	26	10:101	Ru	44	190.2	Ö	76	(202)	Uno	801	
	7	VIIB								TRANSITION ELEMENTS		54.938	Mn	22	98.907	T.	43	186.21	Re	75	(292)	Uns	101	
•	٥	VIB								TRAN		51.996	ර	24	95.94	Mo	42	183.85	À	74	(203)	Unh	90	
	5	\$ \$										50.942	>	23	92,906	ž	4	180.95	Ta	73	(292)	Ha	5	
	4	28										47.88			_	_	_	178.49	_					
	3	1618				 -			r—					21	88.906	>	39	138.91	*La	57	(272)	**Ac	68	
	2	≦				9.012	Be	*		-	<u>'</u> ¤	40.078	ل	20	87.62	Š	38	137.33	Ba	56	226.03	2	86 90	
		≤	1,008	=	_	6.941	3	n	22.990	ž	=	39.08	×	61	85,468	28	37	132.91	ű	55	622	Fr	87	
		PERIODS		-			7			"			4			ĸ			9			7	i	

. *Lanthanide Series	<u> </u>		ZS	P P	Sm 62	15.36 63	\$ 25.5	116.33 65.	Dy My	H 69
**Actinide Series	232.04 Tih 90	231.04 Pa 91	238.03 U 92	237.05 Np 83	(244) Pu 94	(243) Am 95	\$ G G	(247) 131k 97	(25) Cf.	(252) 83 89
		() indi	cates the	mass m	unber of	The isot	the with	the long	gest half	life.

875

(259) No 201

(257) 18 E