

UNIVERSITY OF SWAZILAND Faculty of Health Sciences Department of Environmental Health Science

BSc IN ENVIRONMENTAL HEALTH SCIENCES

RESIT EXAMINATION PAPER 2018

TITLE OF PAPER

ORGANIC CHEMISTRY FOR HEALTH SCIENCES

COURSE CODE

EH S 112

DURATION

2 HOURS

MARKS

100

:

:

INSTRUCTIONS

READ THE QUESTIONS & INSTRUCTIONS

CAREFULLY

ANSWER ANY FOUR QUESTIONS

: EACH QUESTION <u>CARRIES 25</u> MARKS.

: WRITE NEATLY & CLEARLY

NO PAPER SHOULD BE BROUGHT INTO OR

OUT OF THE EXAMINATION ROOM.

: BEGIN EACH QUESTION ON A SEPARATE

SHEET OF PAPER.

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR.

QUESTION ONE

- a) The following compounds have been named incorrectly. Draw structures for the the compounds and give the correct IUPAC names for each.
 - i) 1,2 dichlorohexan-5-ol
 - ii) 2 diethyl octan-7-al

[12 Marks]

- b) Draw the structures of all isomers with the molecular formula C₃H₉N. Give IUPAC names for each isomer.
 [9 Marks]
- c) Formaldehyde, a commonly used biological tissue preservative has the molecular formula CH₂O. Draw the molecular structure and give the functional group/s found in formaldehyde.
 [4 Marks]

QUESTION TWO

- a. Account for the following facts;
 - (i) Chloro-ethane is more reactive than ethane

[3 Marks]

(ii) Fatty acids have polar and non-polar ends.

[3 Marks]

(iii) Tertiary alkyl halides only under S_N1 type of substitution reaction.

[4 Marks]

- b. Draw structures of the compounds described below and give all possible IUPAC name/s for each structure
 - (i) A three carbon aliphatic chain with an alcohol functionality on each carbon.
 - (ii) A straight chain of eight carbons with two methyl groups on the second carbon, an *iso* propyl group on the fourth carbon and a carbonyl group on the eighth carbon.
 - (iii) A four carbon chain with a chloro on the third carbon and a methoxy group on the fourth carbon.

[3 × 5 Marks]

EHS 112 RESIT EXAMINATION PAPER MAY 2018

QUES	TION THREE	
a.	is the ability of carbon to form long ch	ains with itself
	therefore creating millions of organic compounds.	[3 Marks]
b.	Organic compounds contain heteroatoms such as C, N,	O, S, P and [3 Marks]
_	Telegram and the second control of the secon	
c.	Ethene contains only hybridised carbons.	
d.	Compare E1 and E2 reactions and state the factors that affect these	e reactions.
		[10 Marks]
e.	Compare the activation energies required for a secondary and	a tertiary alkyl
	halide to undergo S_N1 reaction. Justify your answer.	[6 Marks]
QUES	TION FOUR	
a.	What is/was the significance of polychlorinated biphenyls	in electricity
	distribution	[5 Marks]
b.	Why is DDT regarded as environmentally damaging?	[5 Marks]
c.	Why are NOM fractions significant in drinking water supply syste	ms?
		[6 Marks]
d.	Explain how hydrolases enzymes function and give three example	es of hydrolases
	enzymes. (You may use chemical equations in your answer)	[9 Marks]

QUESTION FIVE

a. Match the terms on column 1 with the suitable terms on column 2. Explain how the terms relate.

	Column 1	Column 2
(i)	Stereochemical inversion	E2 reaction
(ii)	Delocalization of positive charge	Aldehydes
(iii)	Terminal functional group	Tertiary carbocation
(iv)	Requires β hydrogen	Chloroethane
(v)	High activation energy	El
(vi)	Requires strong base	S _N 2

[18 Marks]

b. Explain how temperature, nature of substrate and pH affects the activity of enzymes in biological systems.
 [7 Marks]

General data and fundamental constants

Quantity .	Symbol	Value
Speed of light	C	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	8	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A a$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
	. **	8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K-1 mol-1
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$h = h/2\pi$	1.054 57 X-10 ⁻³⁴ J s
Avogadro constant	N_{A}	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	n	1.660 54 X 10 ⁻²⁷ Kg
Mass		•
electron	m_{ϵ}	9.109 39 X 10 ³¹ Kg
proton	m_p	1.672 62 X 10 ⁻²⁷ Kg
neutron .	$\mathbf{m}_{\mathbf{r}}$	1.674 93 X 10 ³⁷ Kg
Vacuum permittivity	$\varepsilon_o = 1/c^2 \mu_o$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε,	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ,	$4\pi \times 10^{3} \text{ J s}^{2} \text{ C}^{-2} \text{ m}^{-1}$
•		$4\pi \times 10^{-7} \text{T}^2 \text{J}^1 \text{m}^3$
Magneton		
Bohr	$\mu_s = c\hbar/2m_s$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear.	$\mu_N = e N / 2m$	5.050 79 X 10 ⁻²⁷ J T ¹
g value	g _e	2.002 32
Bohr radius	$a_{\mu} = 4\pi \epsilon_{\mu} \hbar/m_{\mu} c^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 X 10 ³
Rydberg constant	$R_{-} = m_e^4/8h^3cs_e^2$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration	4 4	
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	- Ğ	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

l cal = 1 eV =	4.184 joules (J)	1 erg	= 1 X 10 ⁻⁷ J
	1.602 2 X 10 ¹⁹ J	1 eV/molecule	= 96 485 kJ mol ⁻⁷
Prefixes	f p n femto pico nano 10 ⁻¹⁵ 10 ⁻¹² 10 ⁻⁹	μ m· c micro milli centi 10 ⁻⁴ 10 ⁻³ 10 ⁻²	d k M G deci kilo mega giga 10 ⁻¹ 10 ³ 10 ⁶ 10 ⁹

PERIODIC TABLE OF ELEMENTS

	18	VIIIA	4.003	115	~	20.180	-Ne	Q	39.948	Ar	**	83.80	Ķ	36	131.29	×	×	(ZZ	R	98				
	22	VIIA		,	• •	18,998	لتر	D	15.453	ប	2	79.904	Br	35	126.90		S	(210)	At	\$\$			•	
	91	VIA				15.999	0	00	32.06	(S)	91	78.96	Š	7	127,60	ţ	23	(209)	2	*				
	15	٨				14.007	z	2	30.974	۵,	53	74.922	As	33	121.75	Sp	51	208.98	ä					
	14	ΙΛΑ				12.011	υ	•	28.086	Š	7	†	පී	33	118.71	S	8	_						
	13	IIIA				110.811	m 4	۰۷) ۱۷)	26.982	A	2	69.723	ű	=	114.82	듸	\$	204.38	E					
	12	118				Atomic mass -	Tog	S.	!			65.39.	5	38	-	ğ	₩ ₩	6						
	111	13				Atomic	Symbol	Atomic No.				63.546	Ö	\$2	107.87			 		8				
	10											<u> </u>	Z	28	106.42	Pd	46	195.08	太	200	(267)	Uma	2	
GROUPS	6	VIIIB	•							SIVIS	STAS	58.933	ර	27	102.91	Rh	\$	-			-	Une	505	
Ö	8									ELEM		55.847	2	26	10:101	Ru	#	190.2	ő	76	(592)	Uno	801	
	7	VIIB								PRANSITION ELEMENTS		54.938	Σ	22	98.907	ř.	43	186.21	Re	75	(292)	Uns	107	
	6	VIB								TRAN		51.996	Ċ	24	95.94	Mo	4	183.85	3	74	(263)	Unh	8	•
	\$	₩										50.942	>	23	92,906	ź	41	180.95	La	73	(292)	Ha	5	1
	4	IVB										47.88	F	22	91.224	Z	6	178,49	H	22	(361)	Z	<u>z</u>	
	3	1118			4					—		44.956	Š	77	\$8,906	>-	23	138,91	•La	22	(22)	**Ac	ŝ	
	7	≦				9.012	36	*	24:305	Mg	12	40.078	ق	8	87.62	స్ట	200	137.33	Ba	26	226.03	Z.	90 50	
	1	4	2 :	=		6.941	<u>ت</u>	2	22.990	Z	=	39.098	×	2	85.468	2g	33	132.91	ű	SS	8	F	82	
		FERIORS					H			43			4			ĸ	,		9			~		

*Lanthanide Series	**Actinide Series
*	#

17437 12 12 12	25 7 E	
25.05 27.5 27.5	(259) No 102	
168.93 Tm 69	(258) M.d. 101	
157.26 FF - S8	(257) Frai 100	
164.93 Ho 7è	(252) 88 99	-life.
162.50 Dy 66	ះ ប៍ថ្លិ	gest half
158.93 Tb	(24) 9. 8. 1	the lon
52.725 Gd 88	CA Cm %	ope will
151.96 Eta 63	(243) Am 95	(the isot
150.36 Sm 62	(244) Pu 24	umber o
(145) Rm 18	237.05 Np 93	mass m
144.24 Nd 60	238.03 U 92	cates the
140.91 Pr 59	231.04 Pa 91	() indi
146.12 Se 22	232.04 Th 90	