

UNIVERSITY OF SWAZILAND Faculty of Health Sciences Department of Environmental Health Science BACHELOR OF SCIENCE IN ENVIRONMENTAL HEALTH

RE-SIT EXAMINATION PAPER 2017

TITLE OF PAPER

CHEMISTRY FOR HEALTH

SCIENCES

COURSE CODE

EHS 111

DURATION

2 HOURS

MARKS

100

:

:

:

:

:

:

INSTRUCTIONS

READ THE QUESTIONS & INSTRUCTIONS

CAREFULLY

ANSWER ANY FOUR QUESTIONS

EACH QUESTION <u>CARRIES 25</u> MARKS.

: WRITE NEATLY & CLEARLY

: NO PAPER SHOULD BE BROUGHT INTO OR

OUT OF THE EXAMINATION ROOM.

BEGIN EACH QUESTION ON A SEPARATE

SHEET OF PAPER.

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR.

QUESTION ONE

a. Balance the following redox reaction equations in both acidic and basic media.

Also identify the reducing and oxidizing agent in the reaction

$$MnO_4^- + Br^- \rightarrow Mn^{2+} + Br_2$$
 [20 Marks]

b. The molecular formula of aspartame, an artificial sweetener, is $C_{14}H_{18}N_2O_5$. Calculate the mass of carbon atoms that are present in 1.00 mg of aspartame.

[5 Marks]

QUESTION TWO

- a. The empirical formula of a compound containing phosphorous and oxygen was found to be P₂O₅. If the molar mass is determined to be 283.9 g/mol, what is the molecular formula?
 [8 Marks]
- b. If 0.575 mole of CO₂ is produced by the combustion of propane, C₃H₈, how many moles of oxygen are consumed? [8 Marks]
- c. Draw the Lewis structures for the following compounds:
 - (i) OCl-
 - (ii) PH₃
 - (iii) HNO₃

[9 Marks]

QUESTION THREE

- a. Use the electronegativity table to determine whether the following compounds are ionic or covalent (pure or polar) compounds. Provide a reason for each answer.
 - (i) H₂O₂
 - (ii) KBr
 - (iii)CuCl₂
 - (iv)TiO₂

[8 Marks]

b. If 18.1 g NH₃ is reacted with 90.4 g CuO, what is the maximum amount of Cu metal that can be formed? The balanced chemical equation is given below.

$2NH_3(g) + 3CuO(s) \rightarrow N_2(g) + 3Cu(s) + 3H_2O(g)$

[8 Marks]

c. Naturally occurring magnesium is a mixture of 3 isotopes; 78.99% of the atoms are ²⁴Mg (atomic mass, 23.9850 u), 10.00% of ²⁵Mg (atomic mass, 24.9858 u), and 11.01% of ²⁶Mg (atomic mass, 25.9826 u). From these data calculate the average atomic mass of magnesium. [9 Marks]

QUESTION FOUR

- a. Give the charge and electron configuration on the ion which is underlined in the following compounds:
- (i) $\underline{Sn}(NO_3)_2$
- (ii) BaCl₂
- (iii) CrO2

[15 Marks]

- b. The K_a of hypochlorous acid (HClO) is 3.0 × 10⁻⁸ at 25.0°C. What is the % ionization of hypochlorous acid in a 0.015 M aqueous solution of HClO at 25.0°C?
 [6 Marks]
- c. In the process of attempting to characterize a substance, a chemist makes the following observations:-

The substance is a silvery white, lustrous metal. It melts at 649°C and boils at 1105°C. The substance burns in air, producing an intense white light. It reacts with chlorine to give a brittle white solid. The substance can be pounded into thin sheets or drawn into wires. It is a good conductor of electricity.

Identify any two chemical and two physical properties of the unknown substance. [4 Marks]

QUESTION FIVE

a.	Complete the following statements;
	(i) The three subatomic particles are, and
	(ii) Polar covalent bond has bond polarity of
	(iii) Solids and liquids share the property of
٠.	
	Page 3 of 4

EHS111 RE-SIT EXAMINATION PAPER DECEMBER 2017

	(iv) A common English set of units for expressing speed are mil	es/hour. The SI
	unit for speed is	
	(v) An atom of the most common isotope of gold, ¹⁹⁷ Au, ¹	has
	protons, neutrons, and electrons	-
	(vi) The elements in groups 1A, 3-8B, and 7A are called,	
	and, respectively.	
	(vii)A reducing reagent is	
	(viii) Units for specific gravity are	
	(ix) Aluminium reacts with a certain non-metallic element to for	orm a compound
	with the general formula Al ₂ X ₃ . Element X must be from Gr	oup
	of the Periodic Table of Elements.	
	(x) The oxidation number of Cl in NaClO ₄ is	
		[20 Marks]
b.	What is the difference between a physical and a chemical change?	
		[2 Marks]
c.	State the first law of thermodynamics.	[3 Marks]
•	out une months of the management	io mana

General data and fundamental constants

Quantity .	Symbol	Value
Speed of light	С	2.997 924 58 X 10 ^k m s ⁻¹
Elementary charge	e	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
	• •	8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$h = h/2\pi$	1.054 57 X-10 ⁻³⁴ J s
Avogadro constant	N_A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	m_{ϵ}	9.109 39 X 10 ⁻³¹ Kg
proton	m_p	1.672 62 X 10 ⁻²⁷ Kg
neutron .	m _n	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_o = 1/c^2 \mu_o$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
•	4πε,	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ_{\bullet}	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
•		$4\pi \times 10^{-7} \mathrm{T^2 J^{-1} m^3}$
Magneton		
Bohr	$\mu_{\rm B} = e\hbar/2m_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_N = e\hbar/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	g _e	2.002 32
Bohr radius	$a_0 = 4\pi \epsilon_0 \hbar/m_e c^2$	5.291 77 X 10 ¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	⁻ 7.297 35 X 10 ⁻³
Rydberg constant	$R_{m} = m_{e}e^{4}/8h^{3}c\varepsilon_{o}^{2}$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration	•	
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV =		joules (2 X 10	• /	l erg 1 eV/n	nolecul	e	=	1 X 1 96 48	0" J 5 kJ mol	[-1
Prefixes	f femto 10 ⁻¹⁵			μ micro 10 ⁻⁶	milli	centi		k kilo 10³	M mega 10 ⁶	G giga 10°

Copyright © 2012 John Wiley & Sons, Inc. All rights reserved.

PERIODIC TABLE OF ELEMENTS

,														,						_			
	18	٨١١١٨	4.003	IIc	2	20.180	Ž,	.10	39.948	₹	8.	83.80	꿏	36	131.29	×	54	(222)	Rn	88			
	17	VIIA.			,	18,998	į,	6	35.453	ฉ	11	79.904	Вг	. 35	126.90	-	53	(210)	Αt	85			
	16	VIA		•		15.999	0	∞	32.06	S	. 16	78.96	Se	34	127.60	Ţ e	25	(209)	Po	.84			
•	15	۸۷				14.007	z	7	30.974	F	15	74.922	As	33	121.75	Sp	51	208.98	ä	83	!		
	14	ΙΛΑ		•		12.011	Ċ	9	28.086	Š	4	72.61	පී	32	118.71	Sn	20	207.2	Pb	. 82			
÷	13	YIII				- 10.811	m A	~	26.982	¥	<u></u>	69.723	ខ្ល	31	114.82	ų,	46	204.38	F	81			
	12	113				Atomic mass -	bol	c No.	•			65.39 .	Zu	39	112.41	Ö	48	200.59	Hg	80			
:	11	13				Atomic	Symbol	Atomic No.				-63.546	ΰ	53	107.87	Ag	47	196.97	Αu	79			
	10										`	58:69		28	106.42	Pd	46	195.08	7£	78	(267)	Uun	110
GROUPS	6	VIIIB								RNTS)	58.933	ပိ	27	102.91	₽ 12	45	192.22	1	11	(266)	Une	109
3	8									EI.EM		55.847	E C	. 26	101:07	Ru	44	190.2	õ	26	(265)	Uno	801
	7	VIIB								TRANSITION ELEMENTS		54.938	Mn	25	98.907	٦ ٦	43	186.21	Re	75	(292)	Uns	107 .
	9	VIB.								TIMANS		51.996	ن	24	95.94	Mo	42	183.85					
	5	ΥB				•			٠			50.942	>	23	92.906	S S	41	180.95	La	73	(292)	На	501
	4	1VB										47.88	Ţ	22	91.224	Zr	40	178.49	Hf	72	(261)	Rf	104
	3	IIIB										44.956	Sc	21	88.906	>	39	138.91	* "]	27	(227)	**Ac	89
	7	<u> </u>				9.012	Be	4	24:305	ME	12	40.078	ర	20	87.62	Si	38	137.33	Ba.	56	226.03	Ra	\$ \$0 80 80
		<	1.008	Π	-	6.941	<u> </u>	1	22.990	ž	Ξ	39.098	×	(9	_	_			ű				
		PERIODS		:			7			117			4			ις			9			7	

*Lanthanide Series	
*	

				1.7.	11 10 10 10		103		1		10 1	11 11	
103	102	101	100	66	86	62	96	95	94	93	92		06
ļ	ž	Md	Fm	Es	ຽ	Bk	CH	Αш	Pu .	Z C	>	Га	Ę
(260)	(259)	(258)	(257)	(252)	. (157)	(247)	(247)	(243)	(744)	237.05	238.03	4	232.04
71	70	69	89	67	. 99	. 65	64	63	62	61	09	. 59	28
Ľ	ХÞ	Tim	Ā	Ho	Dy	Ţ	ğ	Eu	Sm		ž	Pr	ర
174.97	173.04	168.93	167-26	164.93	162.50	158.93	157.25	151.96	150.36			-	140.12

() indicates the mass number of the isotope with the longest half-life.