

UNIVERSITY OF SWAZILAND Faculty of Health Sciences Department of Environmental Health Science

BACHELOR OF SCIENCE IN ENVIRONMENTAL HEALTH SCIENCES

RESIT EXAMINATION PAPER 2017

TITLE OF PAPER

INSTRUMENTAL METHODS FOR

ENVIRONMENTAL ANALYSIS II

COURSE CODE

EHS 224

DURATION

2 HOURS

MARKS

100

INSTRUCTIONS

READ THE QUESTIONS & INSTRUCTIONS

CAREFULLY

:

ANSWER ANY FOUR QUESTIONS

:

EACH QUESTION CARRIES 25 MARKS.

:

WRITE NEATLY & CLEARLY

:

NO PAPER SHOULD BE BROUGHT INTO OR

OUT OF THE EXAMINATION ROOM.

:

BEGIN EACH QUESTION ON A SEPARATE

SHEET OF PAPER.

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR.

QUESTION ONE

Describe the basic design difference between a spectrophotometer for absorption measurements and one for emission studies.
 [8 Marks]

b.

- c. A solution containing a complex formed between Bi(III) and thiourea has a molar absorptivity of 9.32 × 10³ Lcm⁻¹mol⁻¹ at 470 nm.
 - (i) What is the absorbance of 3.15 × 10⁻⁴ M solution of the complex at 470 in a 0.5 cm cuvette? [5 Marks]
 - (ii) What is the %T of the solution in (i)?

[6 Marks]

(iii) What is the molar concentration of the complex solution that has the absorbance described in (i) when measured at 470 nm in a 2.5 cm cuvette?

[6 Marks]

[Total: 25 Marks]

QUESTION TWO

- a. Differentiate between continuum source background correction and pulsed hollow cathode lamp background correction.
 [5 Marks]
- b. Briefly describe the working principle of diffraction gratings as monochromators.

[5 Marks]

- c. What is meant by 'deviations from Beer's Law?' How can stray radiations cause these deviations?
 [7 Marks]
- d. Why is the nebulization of liquid samples important in AAS? [3 Marks]
- e. Draw and label hollow cathode lamp. [5 Marks]

QUESTION THREE

a. Outline the operating principles of a flame atomic absorption spectrophotometer.

[8 Marks]

- b. Why is atomic emission more sensitive to flame instability than atomic absorption? [6 Marks]
- c. What is the function of the reference beam in a double beam AAS instrument?

[5 marks]

d. What are the implications of having a signal to noise ratio of 1 for a given signal?

[6 Marks]

QUESTION FOUR

- a. Why are high resolution monochromators found in in ICP atomic emission than in flame atomic absorption? [5 Marks]
- b. Discuss the working principle of diffraction gratings.

[5 Marks]

- c. Outline the sample preparation steps for the analysis of a solid sample using IR spectroscopy.
 [7 Marks]
- d. Describe an ideal detector for spectrophotometry. [8 Marks]

[Total: 25 Marks]

QUESTION FIVE

- a. Explain how flame temperature affects the sensitivity of a flame atomic absorption spectrophotometer. [5 Marks]
- b. Evaluate the missing quantities in the table below. Where needed, use 185 g/mol for the molar mass of the analyte.

	A	%T	a (cm ⁻¹ ppm ⁻¹)	b (cm)	Concentration c		
					M	ppm	
(i)		44.9	0.0258	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.35× 10 ⁻⁴		
(ii)		39.6	0.0912			1.76	
(iii)	0.798			1.50		33.6	
(iv)	0.179			1.00	7.19 × 10 ⁻⁵		

[12 Marks]

c. Outline the sample preparation steps for the analysis of a metals in a biological sample.[8 Marks]

[Total: 25 Marks]

General data and fundamental constants

Quantity ·	Symbol	Value				
Speed of light	C	2.997 924 58 X 10 ² m s ⁻¹				
Elementary charge	e ·	1.602 177 X 10 ⁻¹⁹ C				
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹				
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹				
Gas constant	$R = N_{A}k$	8.314 51 J K ⁻¹ mol ⁻¹				
	•	8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹				
		6.2364 X 10 L Tort K-1 mol-1				
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s				
	$h = h/2\pi$	1.054 57 X-10 ⁻³⁴ J s				
Avogadro constant	N _A	6.022 14 X 10 ²³ mol				
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg				
Mass		·				
electron	m,	9.109 39 X 10 ³¹ Kg				
proton	m_p	1.672 62 X 10 ⁻²⁷ Kg				
neutron .	m,	1.674 93 X 10 ⁻²⁷ Kg				
Vacuum permittivity	$\varepsilon_o = 1/c^2 \mu_o$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹				
	4πε,	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹				
Vacuum permeability	μ_{e}	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$				
•		$4\pi \times 10^{-7} \text{T}^2 \text{J}^{-1} \text{m}^3$				
Magneton						
Bohr	$\mu_B = e\hbar/2m_e$	9.274 02 X 10 ²⁴ J T ¹				
nuclear	$\mu_N = e\hbar/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹				
g value	8e	2.002 32				
Bohr radius	$a_o = 4\pi\epsilon_o l/m_e c^2$	5.291 77 X 10 ⁻¹¹ m				
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 X 10 ³				
Rydberg constant	$R_{-} = m_e^4/8h^3c\epsilon_o^2$	1.097 37 X 10 ⁷ m ⁻¹				
Standard acceleration	7 . *					
of free fall	g	9.806 65 m s ⁻²				
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²				

Conversion factors

l cal = 1 eV =	4.184 joules (J)		1 erg		,	1 X 10.7 J			
	1.602 2 X 10 ⁻¹⁹ J		1 eV/molecule		==	96 485 kJ mol '			
Prefixes	f p femto pico 10 ⁻¹⁵ 10 ⁻¹²	n nano 10-9	μ micro 10 ⁻⁶	-	c centi 10 ⁻²	d deci 10 ⁻¹	k kilo 10³	M mega 10 ⁶	G giga 10°

