

UNIVERSITY OF SWAZILAND Faculty of Health Sciences Department of Environmental Health Science

DEGREE IN ENVIRONMENTAL HEALTH SCIENCES

MAIN EXAMINATION PAPER 2016

TITLE OF PAPER

: INSTRUMENTAL METHODS FOR ENVIRONMENTAL ANALYSIS I

COURSE CODE

: EHS 209

DURATION

: 2 HOURS

MARKS

: 100

INSTRUCTIONS

READ THE QUESTIONS & INSTRUCTIONS

CAREFULLY

A)

ANSWER ANY FOUR QUESTIONS

.

EACH QUESTION **CARRIES 25** MARKS.

:

:

WRITE NEATLY & CLEARLY

:

NO PAPER SHOULD BE BROUGHT INTO OR

OUT OF THE EXAMINATION ROOM.

:

BEGIN EACH QUESTION ON A SEPARATE

SHEET OF PAPER.

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR.

QUESTION ONE

- a. Define the following terms;
 - Dynamic range
 - (ii) Detection limit
 - (iii) Bias
 - (iv) Systematic error
 - (v) Sensitivity
 - (vi) Outlier

 $[2 \times 6 \text{ Marks}]$

- b. What sample preparation steps are involved in the analysis of metallic analytes in biological samples.
 [8 Marks]
- c. In chromatography, what is meant by retention factor?

[5 Marks]

QUESTION TWO

- a. Explain what is an internal standard and how does it improve the precision of an instrumental measurement.
 [8 Marks]
- b. Discuss solvent extraction and include its disadvantages in the extraction of organics from water samples.

[8 Marks]

c. Explain how solid-phase micro-extraction (SPME) works and relate it to the principles of adsorption.

[9 Marks]

QUESTION THREE

- a. Differentiate between a flame ionization detector (FID), a thermal conductivity detector (TCD) and an electron capture detector (ECD).
- b. The concentration of sulphur in a sample of diesel has been given as 50 ppm. However, when a chemist analysed the sulphur content of the sample 5 times, she obtained the following results; 43 ppm, 61 ppm, 52 ppm, 48 ppm, and 44 ppm.
 - (i) Calculate the average, standard deviation, coefficient of variation and standard error of the data set. [6 Marks]

(ii) Calculate the 95% confidence interval.

[3 Marks]

(iii)Use the Q test to reject any outliers in the data set

[4 Marks]

QUESTION FOUR

- a. Discuss the Plate theory in gas chromatography (use diagrams and equations in your discussion).
 [10 Marks]
- b. A TLC plate was developed using a 25 mL, 2:3 mixture of methanol and hexane, respectively. Calculate the elution strength of this solution. (Required data is provided)
 [8 Marks]
- c. Explain why such a mixture as the one in (b) would be used as opposed to using pure solvents. [7 Marks]

QUESTION FIVE

a. What is 'column efficiency' in gas chromatography?

[5 Marks]

- b. How is column efficiency influenced by the following factors? (Use appropriate equations where necessary)
 - (i) 'loading' of the column,
 - (ii) N (number of theoretical plates) and
 - (iii) H (height of plate)? What other factors influence it? [12]
 - [12 Marks]
- c. In a chromatographic analysis of a mixture of chlorinated pesticides, in which a 2.0 m long column was used, a peak with retention time t_r, of 8.68 min and a baseline width of 0.36 min, was identified as dieldrin.
 - (i) Calculate N and H for this column

[4 Marks]

(iv) Determine the capacity factor for dieldrin if the dead time, t_m, for the column is 0.30 Min. [4 Marks]

APPENDIX

VALUES OF t FOR VARIOUS LEVELS OF PROBABILITY							
Number of Observations	Factor for Confidence Interval						
-	80%	90%	95%	99%	99.90%		
1	3.08	6,31	12.7	63.7	637		
2	1.89	2.92	4.3	9.92	31.6		
3_	1.64	2.35	3.18	5.84	12.9		
4	1.53	2.13	2.78	4.6	8.6		
5 .	1.48	2.02	2.57	4.03	6.86		
6	1.44	1.94	2.45	3.71	5.96		
7	1.42	1.9	2.36	3.5	5.4		
8	1.4	1.86	2.31	3.36	5.04		
9	1.38	1.83	2.26	3.25	4.78		
10	1.37	1.81	2.23	3.17	4.59		
11	1.36	1.8	2.2	3.11	4.44		
12	1.36	1.78	2.18	3.06	4.32		
13	1.35	1.77	2.16	3.01	4.22		
14	1.34	1.76	2.14	2.98	4.14		

CRITICAL VALUES FOR REJECTION QUOTIENT Q					
Number of	90%	95%	99%		
Observations	Confidence Confidence		Confidence		
3	0.941	0.970	0.994		
4	0.765	0.829	. 0.926		
5	0.642	0.710	0.821		
6	0.560	0.625	0.740		
7	0.507	0.568	0.680		
8	0.468	0.526	0.634		
9	0.437	0.493	0.598		
10	0.412	0.466	0.568	•'	•

		5	_	•	260)
=	I.	"	103	ŗ	
	Χp	173.04	22	Z	(259)
69	Tm	168.9	101	Md	
89	Er		100	Fm	(257)
29	Ho		66	Es	(252)
8	Ų		86	CC	(150)
65	T _p		26	Bk	717
8	B	157.25	8	Cm	(247)
63	Eu		25		(234)
29	Sm	150.36		Pn	(244)
19	Pm	146.92	-	Z	237.05
8	N	144.24	8		238.03
39	4	140.91		Pa	231.04
58	٥	140.12	8	, L	232.04