

UNIVERSITY OF SWAZILAND Faculty of Health Sciences Department of Environmental Health Science BACHELOR OF SCIENCE IN ENVIRONMENTAL HEALTH

RESIT EXAMINATION PAPER 2017

TITLE OF PAPER

ORGANIC CHEMISTRY FOR HEALTH

SCIENCES

COURSE CODE

EHS 112

DURATION

2 HOURS

MARKS

100

INSTRUCTIONS

READ THE QUESTIONS & INSTRUCTIONS

CAREFULLY

ANSWER ANY FOUR QUESTIONS

: EACH QUESTION **CARRIES 25** MARKS.

: WRITE NEATLY & CLEARLY

: NO PAPER SHOULD BE BROUGHT INTO OR

OUT OF THE EXAMINATION ROOM.

: BEGIN EACH QUESTION ON A SEPARATE

SHEET OF PAPER.

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR.

EHS 112 RESIT EXAMINATION PAPER 2017 MAY

QUES	TION ON	NE											
a.	Hydrocarbon A has the formula C ₉ H ₁₂ and absorbs 3 equivalents of hydrogen to												
	yield B, C_9H_{18} , when hydrogenated over a Pd/C catalyst. Give the structures of												
	both A and B [4 Marks]								ks]				
b.	therefore creating millions of organic compounds. [2 Marks]												
c.	Organic	compo	ounds	contain	hetero	atoms	such	as	H, N,	Ο,	S, I	o and	
_			<u></u> ·							[2]	Mark	s]	
d.	Benzene contains only hybridised carbons. [2 Marks]											s]	
e.	Draw sat	Draw saturated structures for the following compounds and fill in non-bonding											
	valence electrons where they can be found.												
	i)) 1	,2-dichl	oroetha	ne								
	ii)	i) (Carbon r	nonoxid	le								
	iii	ii) N	Aethano	l									
	iv	v) 2	,4'-dich	loro bip	henyl								
	v)) 2	-bromo	-4-meth	oxyhexa	anal				[15	Mar	ks]	
									[Tota	l: 25	Mar	ks]	
QUES	TION TV	WO											
a.	Dissolved organic carbon (DOC) is derived from the decomposition of naturally												
	occurring material in water.												
	(i) Name any four classes of organic compounds that make up DOC.												
										-	Mark	-	
	(ii) What are the water treatment problems associated with the presence of												
	DOC? Give a brief discussion on how these problems occur [9 Marks] Draw all structural isomers of hexene, C_6H_{12} , that have unbranched carbon chains.												
b.	Draw all	structu	ral ison	ners of h	exene,	C_6H_{12}	, that h	ave ur	branch	ed car	rbon (chains.	
											-	narks]	
OHE	TOTAL TOTAL	WDED							[Tota	ıl: 25	Mar	ks]	
-	STION TH		£-11	C									
a.	Account for the following facts;												
	(i) Primary carbocations do not undergo S _N 1 type of reactions. [5 Marks]												
	-												

(ii) Terminal alkenes form minor products of reactions involving the dehydration of alcohols.

[5 Marks]

- b. Draw structures of the compounds described below and give the IUPAC name for each structure
 - (i) An aromatic compound containing one benzene ring and a single carboxyl group which is *ortho* to a bromo group and *para* to a hydroxyl group.
 - (ii) A straight chain of eight carbons with two methyl groups on the second carbon, an *iso* propyl group on the fourth carbon and a carbonyl group on the eighth carbon.
 - (iii) An unsaturated compound, C₃H₆, undergoes a halogenation reaction to produce dichloride product, A. Draw the molecular structure of Product A.

[15 Marks]

[Total: 25 Marks]

QUESTION FOUR

a) Consider the structure of urea shown below and do the following:

O || H₂N—C—NH₂

- Fill in the non-bonding valence electrons that are missing from the line bond structure.
 [4 Marks]
- ii) Determine the hybridization of the carbon atom. [2 Marks]
- iii) Predict the bond angle of NH₂-C=O in urea. [3 Marks]
- b) There are two molecules with the molecular formula C₃H₉N. Draw them and describe how they differ.
 [6 Marks]
- c) What is the difference between S_N1 and S_N2 reactions? [6 Marks]
- d) Give examples of each type of reaction in (c). [4 Marks]

[Total: 25 Marks]

EHS 112 RESIT EXAMINATION PAPER 2017 MAY

QUESTION FIVE

- a. Give the molecular formula of a hydrocarbon containing five carbon atoms that is;
 - (i) An alkane
 - (ii) Cycloalkane
 - (iii) An alkene
 - (iv) An alkyne.

[Marks 8]

- b. Explain why the molecular formulae of the answers given in a. (i) and (ii) are different.[Marks 4]
- c. Using appropriate examples, explain the difference between
 - (i) Alkane and an alkyl group
 - (ii) A saturated and unsaturated hydrocarbon
 - (iii) A branched and a straight chain hydrocarbon
 - (iv) Benzene and cyclohexane

[8 Marks]

d. Write a balanced chemical equation for the reaction of 2-butene and bromine.

[5 Marks]

[Total: 25 Marks]

Yb 173.04

Tm 168.93

Er 167.26

H0 164.93

Dy 162.50

Tb

Gd

Eu 151.97

Sm 150.36

Pm / 146.92

Nd

Pr 140.91

Ce 148.12

8

8

Md

F.m.

ES (252)

Cf

Bk

Cin

Am (234)

Pu

Np 237.03

238.03

Pa 231.04

Th 232.04