

UNIVERSITY OF SWAZILAND Faculty of Health Sciences Department of Environmental Health Science BACHELOR OF SCIENCE IN ENVIRONMENTAL HEALTH

RESIT EXAMINATION PAPER 2017

TITLE OF PAPER

CHEMISTRY FOR HEALTH

SCIENCES

COURSE CODE

EHS 111

DURATION

2 HOURS

MARKS

100

INSTRUCTIONS

READ THE QUESTIONS & INSTRUCTIONS

CAREFULLY

•

ANSWER ANY FOUR QUESTIONS

:

EACH QUESTION CARRIES 25 MARKS.

:

WRITE NEATLY & CLEARLY

;

NO PAPER SHOULD BE BROUGHT INTO OR

OUT OF THE EXAMINATION ROOM.

:

BEGIN EACH QUESTION ON A SEPARATE

SHEET OF PAPER.

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR.

QUESTION ONE

- a. With reference to enthalpy changes, what does the term "standard conditions" mean?
 [6 Marks]
- b. Discuss why the dissolution of water in butene (C₄H₈) is inhibited?

[5 Marks]

c. The element X has three naturally occurring isotopes. The isotopic masses (amu) and % abundances of the isotopes are given in the table below. The average atomic mass of the element is _____ amu.(fill in the blank space)

Isotope	Abundance	Mass
159X	30.60	159.37
163x	15.79	162.79
164X	53.61	163.92

[8 Marks]

d. The reaction of $A \rightarrow B$ is first order in [A]. Consider the following data.

time (s)	[A] (M)
0.0	1.60
10.0	0.40
20.0	0.10

(i) What is the rate constant for this reaction?

[3 Marks]

(ii) What is the half-life of this reaction?

[3 Marks]

QUESTION TWO

- a. Balance the redox reaction equation of potassium permanganate and a solution of a bromide salt in both acidic and basic media. Identify the reducing and oxidizing agents in this reaction. [18 Marks]
- b. In an experiment, 40.0 cm³ of 0.119 M barium hydroxide were mixed with 20.0 cm³ of 0.330 M aluminium sulphate. What is the total mass of the precipitate that forms?

[7 Marks]

QUESTION THREE

- a. Use the electronegativity table to determine whether the following compunds are ionic or covalent (pure or polar) compounds. Provide a reason for each answer.
 - (i) CO₂
 - (ii) HBr
 - (iii) CuCl
 - (iv) VO₂

[3 × 4 Marks]

b. What is a process used for the synthesis of ammonia?

[3 Marks]

c. Give a correct expression for equilibrium-constant for the reaction below?

2SO₂ (g) + O₂ (g)
$$\rightleftharpoons$$
 2SO₃ (g)

[6 Marks]

d. State Le Châtelier's principle.

[4 Marks]

EHS 111 RESIT EXAMINATION PAPER 2017

QUESTION	N FOUR
a. Write	out the full electron configuration of the following elements.
(i) Pb	
(ii) Br ₂	
(iii) Ag	
	[3 × 3 Marks]
b. If a s	sample containing only phosphorous and oxygen has percent composition
56.34	% P & 43.66% O, is the sample P_4O_{10} ? [10 Marks]
c. Deter	mine the pH of a 0.35 M aqueous solution of CH ₃ N H ₂ (methylamine). The
K _b of	f methylamine is 4.4×10^{-4} . [6 Marks]
a. Wha	at is an Arrhenius base and Arrhenius acid?
1 0	[5 Marks]
	aplete the following statements;
(i)	Precision refers to
(ii)	· ———
(iii)	A separation process that depends on differing abilities of substances to
(iv)	form gases is called Gases and liquids share the property of
(v)	A common English set of units for expressing velocity is miles/hour. The
(*)	SI unit for velocity is .
(vi)	An atom of the most common isotope of gold, ¹⁹⁷ Au, has
	protons, neutrons, and electrons

Page 4 of 5

	EHS 111 RESIT EXAMINATION PAPER 2017
(vi	i) The elements in groups 2A, 6A, and 7A are called,, respectively.
(vi	ii) Gold has a density of 0.01932 kg/cm ³ . What volume (in cm ³) would be occupied by a 10.0 g sample of gold?
(ix) Aluminum reacts with a certain nonmetallic element to form a compound
	with the general formula Al2X3. The oxidation number of Element X must
	be
(x)	The oxidation number of Nitrogen in NH3 is
	[2 × 10 Marks]
	•

SI Units and Conversions

Unit	Symbol	SI units
Newton	N	kg.m.s ⁻²
Pascal	Pa	kg.m ⁻¹ .s ⁻² or N.m ⁻²
Joule	J	kg.m ² .s ⁻² or N.m or AVs
Watt	W	kg.m ² .s ⁻³ or J.s ⁻¹
Coulomb	С	A.s
Volt	V	kg.m ² .s ⁻³ .A ⁻¹ or J.C ⁻¹
Ohm	Ω	kg.m ² .s ⁻³ .A ⁻² or v.A ⁻¹
Amp	A	1Cs ⁻¹

Pressure Units and conversion factors

Pa	I Pa = 1 N.m ⁻²
Bar	1 bar = 10 ⁵ Pa
Atmosphere	1 atm = 101.325 kPa
Torr	760 Torr = 1 atm
	760 Torr = 760 mmHg= 101.325 kPa

General data and Fundamental Constants

00,10,0,	data bila i allagii	Telleur Collocation
Gas constant	R	8.314 51 J.K ⁻¹ .mol ⁻¹ 8.314 51 x 10 ⁻² L.bar.K ⁻¹ .mol ⁻¹ 8.205 78 x 10 ⁻² L.atm.K ⁻¹ .mol ⁻¹ 62.364 L.Torr.K ⁻¹ .mol ⁻¹
Avogadro constant	N _A	6.022169 x 10 ²³ mol ⁻¹
Molar volume of an ideal gas at 0°C and 1 atm	V _m	22.414 dm ³

UNIVERSITY OF SWAZILAND Department of Chemistry

		Atomic Weight
2	He	4.0026
Atomic Number		

Be 9.0122

Li 6947

H 1.0079

Ne 20.179

0

N 14.007

C 12011

B 10.811

He 4.0026

Ar 39.948

CI 35.453

32.064

P 30.974

Si. 28.086

Kr

Br 79.904

Se. 78.96

AS 74,922

Ge 72.65

Xe 131.29

Te 127.60

Sb121.75

Sn 118.71

At

Po

Bi208.98

Pb 207.2

	32	205	38	
AI 26.982	31 Ga 68.723	49 In 114.82	81 TI 204.38	
		_ =	<u> </u>	
	30 Zn 63.39	48 Cd //24/	80 Hg 200.59	
	29 Cu 63.546	Ag	79 Au 196.97	
	28 Ni 58.69	46 Pd 106.42	78 Pt 195.08	
	Z7 C0	45. Rh	17	
	26 Fe	Ru 101.07	0s 1982	
	25 Mn 54.938	Tc	75 Re	
	Cr	42 Mo	74 W 783.85	
	23 V 50 027	Nb 92.906	Ta 180.95	
	Ti	40 Zr	72 Hf 178.49	
	Sc.	39 X	57 La 138.91	88 AC 227.03

Sr 87.62

Rb

Ca +0.078

K 39.098

Mg 24.305

Na 22.990

Ba137.33

Cs 13291

Ra 226.03

Fr (223)

58	59	8	19	62	63	2	59	8	19	e n	•		-
ع	P	Z	Pm	Sm	Eu	3	Tp	Ò	Ho	Er	Tm	Χp	Γn
140.12	110.91	144.24	146.92	150.36	151.97	157.25					168.93	173.04	174.97
Ş	6	92	_	8	8	8	16	86	66	001	101	02	103
<u>_</u>	Da	1	Z				Bk	Ç	Es	Fm	Md	2°	Ļ
232.04	231.04	238.03	237.05	(740)	(234)	(247)	247	(251)	(252)	(257)	(258)		(092)
			1										

Copyright © 2012 John Wiley & Sons, Inc. All rights reserved.