

UNIVERSITY OF SWAZILAND Faculty of Health Sciences Department of Environmental Health Science BACHELOR OF SCIENCE IN ENVIRONMENTAL HEALTH

MAIN EXAMINATION PAPER 2016

TITLE OF PAPER

CHEMISTRY FOR HEALTH

SCIENCES

COURSE CODE

EHS 111

DURATION

2 HOURS

MARKS

100

INSTRUCTIONS

READ THE QUESTIONS & INSTRUCTIONS

CAREFULLY

: ANSWER ANY FOUR QUESTIONS

: EACH QUESTION **CARRIES 25** MARKS.

: WRITE NEATLY & CLEARLY

: NO PAPER SHOULD BE BROUGHT INTO OR

OUT OF THE EXAMINATION ROOM.

BEGIN EACH QUESTION ON A SEPARATE

SHEET OF PAPER.

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR.

QUESTION ONE

- a. Explain why the dissolution of water in octane (C₈H₁₈) is inhibited?[4 Marks]
- b. The decomposition of N₂O₅ in the presence of carbon tetrachloride proceeds via the reaction

$$2N_2O_5$$
 (soln) $\rightarrow 4NO_2$ (soln) + O_2 (soln)

The reaction is first order and has a rate constant of 4.82×10^{-3} s⁻¹ at 64°C. Write the rate law for this reaction. [5 Marks]

c. The value of ΔH° for the reaction below is -1107 kJ:

$$2Ba(s) + O_2(g) \rightarrow 2BaO(s)$$

How many kJ of heat are released when 15.75 g of Ba (s) reacts completely with oxygen to form BaO (s)? [6 Marks]

d. Of the acids in the table below, which one is the strongest?

Acid	Ka
HOAc	1.8 × 10 ⁻⁵
нсно2	1.8 × 10 ⁻⁴
HClO	3.0 × 10 ⁻⁸
HF	6.8 × 10-4

[3 Marks]

e. The K_a of hypochlorous acid (HClO) is 3.0×10^{-8} at 25.0° C. What is the % ionization of hypochlorous acid in a 0.015 M aqueous solution of HClO at 25.0° C? [7 Marks]

EHS 111 MAIN EXAMINATION PAPER DECEMBER 2016

QUES'	TION TWO
a.	Complete the following statements;
(i)	Bond polarity refers to
(ii)	Polar covalent bond refers to
(iii)	An oxidizing reagent is
(iv)	Gases and liquids share the property of
(v)	A common English set of units for expressing volume is gallon. The SI unit for
	volume is
(vi)	An atom of the most common isotope of gold, ¹⁹⁷ Au, has protons,
	neutrons, and electrons
(vii)	The elements in groups 1A, 3-8B, and 6A are called,, and
	, respectively.
(viii)	The specific gravity of 55% nitric acid is 1.40 at room temperature. What volume
	(in cm ³) would be occupied by a 44 g sample of nitric acid?
(ix)	Aluminium reacts with a certain non-metallic element to form a compound with
	the general formula Al ₂ X ₃ . Element X must be from Group of the
	Periodic Table of Elements.
(x)	The oxidation number of Cl in NaClO ₄ is
	[1 × 10 Marks]
b. V	What is the difference between a physical and a chemical change? [3 Marks]
c. (Give the charge and electron configuration on the ion which is underlined in the
	following compounds:
(i)	<u>Pb(NO₃)</u> ₂
(ii)	<u>Cs</u> Cl
(iii) <u>Si</u> O ₂
	[3 × 4 Marks]
	Page 3 of 5

QUESTION THREE

- a. Use the electronegativity table to determine whether the following compounds are ionic or covalent (pure or polar) compounds. Provide a reason for each answer.
 - (i) H₂O₂
 - (ii) KBr
 - (iii)CuCl₂
 - (iv)TiO₂

[4×3 Marks]

b. State the first law of thermodynamics.

- [3 Marks]
- c. With reference to enthalpy changes, what does the term "standard conditions" mean? [6 Marks]
- d. State Hess's Law.

[4 Marks]

QUESTION FOUR

 Balance the following redox reaction equations in acidic media. For each equation, identify the reducing agent.

(i)
$$MnO_4^- + Br^- \rightarrow Mn^{2+} + Br_2$$

(ii)
$$CN^- + Fe^{3+} \rightarrow CNO^- + Fe^{2+}$$

 $[2 \times 10 \text{ Marks}]$

b. What are; an Arrhenius acid, a Brønsted-Lowry acid and a Lewis acid?

[5 Marks]

QUESTION FIVE

- a. If a sample containing only phosphorous and oxygen has percent composition 56.34% P and 43.66% O, could the sample be P₄O₁₀? [10 Marks]
- b. When a 0.2312 g sample of a compound was analyzed, it was found to contain 0.0894 g of C, 0.0375 g of H, and 0.1043 g of N. Calculate the empirical formula of this compound.
 [8 Marks]
- c. In an experiment, 40.0 cm³ of 0.270 M barium hydroxide were mixed with 20.0 cm³ of 0.330 M aluminium sulphate. What is the total mass of the precipitate that is formed?

[7 Marks]

SI Units and Conversions

Unit	Symbol	SI units
Newton	N	kg.m.s ⁻²
Pascal	Pa	kg.m ⁻¹ .s ⁻² or N.m ⁻²
Joule	J	kg.m ² .s ⁻² or N.m or AVs
Watt	W	kg.m ² .s ⁻³ or J.s ⁻¹
Coulomb	С	A.s
Volt	٧	kg.m ² .s ⁻³ .A ⁻¹ or J.C ⁻¹
Ohm	Ω	kg.m ² .s ⁻³ .A ⁻² or v.A ⁻¹
Amp	A	1Cs ⁻¹

Pressure Units and conversion factors

Pa	l Pa = 1 N.m ⁻²
Bar	1 bar = 10 ⁵ Pa
Atmosphere	1 atm = 101.325 kPa
Torr	760 Torr = 1 atm
	760 Torr = 760 mmHg= 101.325 kPa

General data and Fundamental Constants

QC11C1U1	auta ana i anaan	ricital constants
Gas constant	R	8.314 51 J.K ⁻¹ .mol ⁻¹ 8.314 51 x 10 ⁻² L.bar.K ⁻¹ .mol ⁻¹ 8.205 78 x 10 ⁻² L.atm.K ⁻¹ .mol ⁻¹ 62.364 L.Torr.K ⁻¹ ,mol ⁻¹
Avogadro constant	N _A	6.022169 x 10 ²³ mol ⁻¹
Molar volume of an ideal gas at 0°C and 1 atm	V _m	22.414 dm ³

UNIVERSITY OF SWAZILAND Department of Chemistry

Atomic Number 2

He 4.0026
Atomic Weight

Ne 20.179

N 14.007

C 12.011

B. 10.877

Ar 39.948

35,433

32.064

P 30.974

Si 28.086 Ā

Br 79.904

Se. 78.96

AS 74.922

Ge

Xe 131.23

Sb 121.75

Sn 118.71 **Bi** 208.98

Pb 207.2

24.305												26.982	82
	[2		22	23	24	25	26	27	28	62	30	3	l
Ca		Sc	Ë	>	۲	Mn	Fe	V	Z	C	7	g B	
40.078		44.956		50.942	51.99	54.938	55.847	58.933	58.69	63.546	65.39	69.7	2
	8		40	41	42	43	14	45.	46		48	49	
Sr		×	Zr	N	Mo	Tc	Ru	Rh	Pd	Ag	J	In	
87.62		88.906	91.224	92.906	95.94	88	101.07	102.91	106.4	107.87	112.41	11.4	3
	52		72	73	74	75	76	11	78	62	8	<u>≈</u>	
Ra		I.a	Hf	Ta	×	Re	ő	ı.	Pt	Au	Hg	E	
137.33		138.91			1	186.2	190.2	192.22	195.08	196.97	200.59		3
	86	6											
ב ב		*											

Rb 85.47 Fr (223)

u 74.97 r (260)	
「中」 『中』	
Yb 173.04 No 1239	
Ta Z	
Er 167.26 80 Fm	
Ho 164.93 ES (252)	
Dy 162.59 Cf	
Tb 13899 Bk Bk	
Ga Ca	
Eu 151.97	
Sm 150.36 Pu	- 1
Pm Np Np 37.05	١
Nd Nd %	
9 Pr 14691 91 Pa	
Ce 146.12	

Electronegativity Table

Copyright © 2012 John Wiley & Sons, Inc. All rights reserved.