

UNIVERSITY OF SWAZILAND Faculty of Health Sciences Department of Environmental Health Science

BACHELOR OF SCIENCE IN ENVIRONMENTAL MANAGEMENT AND WATER RESOURCES

MAIN EXAMINATION PAPER 2016

TITLE OF PAPER

: WATER TREATMENT

COURSE CODE

: EHM 423

DURATION

: 2 HOURS

MARKS

: 100

INSTRUCTIONS

READ THE QUESTIONS & INSTRUCTIONS

CAREFULLY

ANSWER ANY FOUR QUESTIONS

EACH QUESTION CARRIES 25 MARKS.

: WRITE NEATLY & CLEARLY

NO PAPER SHOULD BE BROUGHT INTO THE

EXAMINATION ROOM.

BEGIN EACH QUESTION ON A SEPARATE

SHEET OF PAPER.

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR.

QUESTION ONE(5 Marks each)

- 1A. If the average intensity of the UV radiation to which a sample was exposed is 10 $\,$ mW/cm², determine the UV intensity measured at the water surface in a petri dish. The depth of water in the petri dish is 15 mm. Assume the absorptivity k (at $\lambda = 254$ nm) is equal to 1.15 cm⁻¹.
- **1B.** Determine the alkalinity (both in milli equivalents per liter as well as mg/L as CaCO₃) of water sample that has the following characteristics:

Parameter	pН	CO ₃ =	HCO ₃	H ₂ CO ₃	
Concentration	8.9	65 mg/L	120 mg/l	5 mg/l	

- 1C. Discuss the factors that influence film diffusion in ion exchange resins and the instances under which film diffusion can become a controlling factor.
- **1D.** For ion exchange resins and with the help of a sketch, define the following capacities:
- i)Breakthrough capacity ii) Operating capacity iii) Ultimate capacity
- 1E. Figures Q1-A and B show the exchange isotherms of ion B originally present in solution compared to that of ion A originally present on the resin. Compare the two figures in terms of the strength of adsorption of ion B onto the ion exchange resin vis-à-vis that of ion A.

Figure Q1-B

EHM423 MAIN EXAMINATION PAPER 2016DECEMBER

QUESTION TWO

- **2B.** A given activated carbon produced was found to possess a pH of 8.5. Discuss the potential of this activated carbon for the removal of organic matter in which:
- 2C. A batch adsorption study of a given polluted water gave the data shown in the table below. If the raw water COD was 250 mg/L and the treated water COD should be restricted to 4.70 mg/L or less, determine:
 - The total water volume that can be treated before breakthrough if the total weight of activated carbon provided is 100 kg and the rate of flow is 200 lit/day.
 [7] marks]
 - ii. Determine the length of time that this 100 kg activated carbon serves before it is taken out of operation because of breakthrough.

.....[6 marks]

Flask No.	Wt. of Carbon (mg) (m)	Volume in Flask (ml)	Final COD (mg/l) (C)	Wt. of Adsorbate Adsorbed (mg)	$\frac{x}{m}$ (mg/mg)
1	804	200	4.70	49.06	0.061
2	668	200	7.0	48.6	0.073
3	512	200	9.31	48.1	0.094
4	393	200	16.6	46.7	0.118
5	313	200	32.5	43.5	0.139
6	238	200	62.8	37.4	0.157
7	0	200	250	0	0

QUESTION THREE

	Compound A	Compound B	Olfactile added total	Olfactle found in mixture	
Olfactile added					
Case I	0.3	0.5	0.8	1.0	
Case II	0.5	0.3	0.8	0.8	
Case III	0.8	0.75	1.55	1.0	

- 3C. Looking at the solubility diagrams of iron shown in Figure Q3-1 below, discuss the influence the presence of significant amount of alkalinity on the solubility of iron and the implication on water treatment for the removal of iron [5 Marks]

Figure Q3-1: Solubility of iron diagram for OH controlled and carbonate controlled precipitation of iron

EHM423 MAIN EXAMINATION PAPER 2016DECEMBER

QUESTION FOUR(25 Marks)

The table below shows the results of water quality analysis of a sample of raw water intended for potable water treatment. Determine:

- i. The bicarbonate and permanent hardness in mg/L of CaCO₃ [13 Marks]
- ii. The lime and soda ash required to soften this water.[12 Marks]

Parameter	TDS	Ca	Mg	Na	K	HCO ₃	SO ₄	Cl	H ₂ CO ₃ *	pН
Unit	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	pН
		mg/L	mg/L	ing/L	mg/L	mg/L	mg/L	mg/L		units
Concentration	300	65	20	15	5	200	120	25	20	7.2

QUESTION FIVE(5 marks each)

- **5A.** Compare the operating characteristics of membrane filters and granular filters in terms of:
 - i. Filtration rate
 - ii. Operating pressure
 - iii. Filter cycle duration
 - iv. Filtration mechanism
- **5B.** Compare the advantages and disadvantages of:
 - i. Inside-out membrane operation and
 - ii. Outside-in membrane operations
- **5C.** Explain why cross flow filtration mode may not be useful for water treatment applications compared to the dead end mode.
- **5D.** According to the information provided on the percent rejection for MF and UF membranes in Figure Q5-1 shown below, determine the retention ratings of i) MF membrane ii) UF membrane.

Figure Q5-1: Percent rejection of MF and UF membranes

5E. List the pretreatment and post treatment requirements of reverse osmosis plants.