

UNIVERSITY OF SWAZILAND

FACULTY OF HEALTH SCIENCES DEPARTMENT OF ENVIRONMENTAL HEALTH BSc DEGREE IN ENVIRONMENTAL HEALTH SCIENCES SUPPLEMENTARY EXAMINATION, JULY, 2017

TITLE OF PAPER

: RADIOACTIVITY AND RADIATION

COURSE CODE

: EHM 417

TIME

: 2HOURS

TOTAL MARKS

: 100

INSTRUCTIONS:

- 1. QUESTION 1 IS COMPULSORY
- 2. ANSWER ANY OTHER THREE QUESTIONS
- 3. ALL QUESTIONS ARE WORTH 25 MARKS EACH
- 4. FORMULAE AND PERIODIC TABLE ARE PROVIDED
- 5. BEGIN THE ANSWER TO EACH QUESTION IN A SEPARATE SHEET OF PAPER.

DO NO OPEN THIS EXAMINATION PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

- I. Multiple choices: for the following statements as applied in radioactivity, radiation, health and safety write whether they are True or False.
 - a) Ultrasound frequencies are those above 20 Hertz.
 - b) When a transducer is connected to a computer it can produce images of internal organs.
 - c) One advantage of ultrasonography is that it uses radiation.
 - d) Kidney stones are broken up by means of ultrasonic waves that are produced by a lithotripter.
 - e) An atom is made primarily of three fundamental particles; protons, electrons and neutrons.
 - f) A nuclear reaction is when a particle penetrates and changes a nucleus.
 - g) If an object gains energy its mass decreases.
 - h) When an atom emits a beta particle, its mass number decreases by 2 and its atomic number decreases by 1.
 - i) The standard unit is the curie, the number of nuclear disintegrations occurring per second in 1 kg of uranium.
 - j) The nuclear strong force is able overcome the electrostatic force of repulsion between protons and it binds the nucleons into a package.

(20 marks)

II. Briefly describe ultrasonography.

(5 marks)

QUESTION 2

i. Describe alpha radiation.

(7 marks)

ii. Cesium – 137, $^{137}_{55}Cs$ is one of the radioactive wastes from a nuclear power plant or an atomic bomb explosion, emits beta and gamma radiation. Write a nuclear equation for the decay of Cesium – 137,

(6 marks)

iii. Describe the arrangement of electrons in an atom and the importance attached to such an arrangement.

(6 marks)

iv. Strontium – 90, a beta emitter, is one of many radionuclides present in the wastes of operating nuclear power plants. Write a balanced nuclear equation for the decay.

(6 marks)

QUESTION 3

a) Describe radiation under the following headings:

i) Units of Activityii) Units of Radiation Dose

[3]

[3]

EHM417 SUPPLEMENTARY EXAM PAPER JULY 2017

	iii)	Additive Units for Radiation Dose	[3]	
	iv)	Radiation Sickness	[3]	
	v)	Radiation-Produced Free Radicals	[3]	
	vi)	Background Radiation	[3]	
		*	(10 1)	
1.1	(18 marks)			
D)	b) What is the health and safety importance of gamma rays and how can			
	disting	guished among other particles?	44	
۵)	4415	from a small source the radiation intensity is 40 units. I	(4 marks)	
c)	At 1.5 m from a small source, the radiation intensity is 40 units. What is the			
	radiati	ion intensity at 5,6 m?	(2)	
			(3 marks)	
OHESTION 4				
QUESTION 4				
	i.	Describe nuclear waste and how it can be safely dealt with	n to safeguard	
	1.	public health.	r to sureguara	
		public health.	(15 montes)	
	ii.	Describe applications of radioactivity under the follow	(15 marks)	
	11.	Describe applications of radioactivity under the follow	ing neading,	
		Radioactive tracers	[6]	
	a. 1-		[5]	
	b.	Radiological dating	[5]	
OUE	TTT ON		(10 marks)	
QUESTION 5				
a. Describe how a scan is produced.				
u,	(4 marks)			
b.	Descri	ibe carbon-14 dating	(4 marks)	
0.	(8 marks			
			(o marks)	
c.	Briefly	y describe sources of radiation		
	•		(6 marks)	
d.	Briefly	y describe irradiation of food	(
	•		(3 marks)	
e.	In the	1940s scrolls were found in the Dead Sea. Some were mad	,	
	copper and others were made of parchment, when one parchment scroll was			
	analyzed by the carbon-14 dating method, its specific activity was found to be			
		Bqg ⁻¹ . Calculate the age of the scroll to two significant figures.		
		10	(4 marks)	
			(· marks)	

FORMULAE- ACOUSTIC AND HEALTH

1.
$$W = \sum_{i=1}^{4} \frac{p \text{ rms(I)S}}{\rho C}$$
 where $\rho C = 420 \text{ RAYLS}$
2. $SPL = 10 \log (p_1/p_0)^2$
3. $NR = 10 \log_{10} = \underline{TA_2}$

2. SPL=
$$\frac{10 \log (p_1/p_0)^2}{10 \log (p_1/p_0)^2}$$

3. NR=
$$10 \log_{10} = \frac{TA_2}{TA_1}$$

4.
$$SPL_t = 10 \log_{10} [\Sigma 10^{SPL/10}]$$

5. $SWL = 10 \log W/W_0$

5. SWL=
$$10 \log W/W_0$$

6.
$$I = \frac{W}{1}$$

5. SWL= 10 log W/W₀
6.
$$I = \frac{W}{A}$$

7. $I = \underline{p^2_{rms}}$ or $p_{rms} = (I \rho C)^{1/2}$
 ρC

8. S.I.L = 10 log₁₀ (I/I_{ref})
9. R =
$$\frac{S\tilde{\alpha}}{1-\tilde{\alpha}}$$

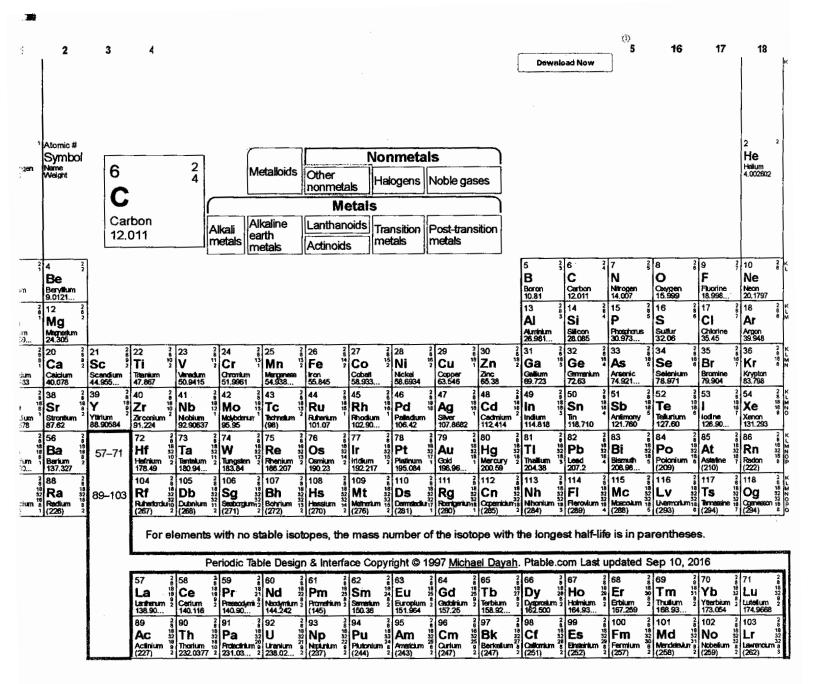
9.
$$R = \frac{S\tilde{\alpha}}{1-\tilde{\alpha}}$$

10.
$$\bar{\alpha} = \underline{S_1}\bar{\alpha}_1 + \underline{S_2}\bar{\alpha}_2 + \dots$$

$$S_i + S_2$$

11. SPL_t = SWL + 10 log₁₀ {
$$\frac{Q}{4\pi r} 2 + \frac{4}{R}$$
}

12.
$$T = \frac{0.161 \text{ V}}{S\bar{\alpha}}$$


13.
$$T = \frac{0.161 \text{ V}}{-\text{S}[\ln{(1-\tilde{\alpha})}]+4\text{mV}}$$

14.
$$\tau = \frac{p_t^2/\rho C^2}{p_i^2/\rho C^2}$$

15. TL=
$$10 \log_{10} \left[\frac{1}{r} \right]$$

16.
$$t = \frac{1}{1.21 \times 10^{-4} \ yr^{-1}} \ln(\frac{0.227}{s})$$

17. Radiation Intensity $\propto \frac{1}{d^2}$

17. Radiation Intensity
$$\propto \frac{1}{a^2}$$

