

UNIVERSITY OF SWAZILAND Faculty of Health Sciences Department of Environmental Health Science

BACHELOR OF SCIENCE IN ENVIRONMENTAL HEALTH SCIENCES MAIN EXAMINATION PAPER 2017

TITLE OF PAPER

INSTRUMENTAL METHODS FOR

ENVIRONMENTAL ANALYSIS II

COURSE CODE

EHM 212

DURATION

2 HOURS

MARKS

100

INSTRUCTIONS

READ THE QUESTIONS & INSTRUCTIONS

CAREFULLY

ANSWER ANY FOUR QUESTIONS

: EACH QUESTION **CARRIES 25** MARKS.

: WRITE NEATLY & CLEARLY

NO PAPER SHOULD BE BROUGHT INTO OR

OUT OF THE EXAMINATION ROOM.

BEGIN EACH QUESTION ON A SEPARATE

SHEET OF PAPER.

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION IS GRANTED BY THE INVIGILATOR.

EHM212 MAIN EXAMINATION PAPER 2017 MAY

QUESTION ONE

- a. What type of transitions do IR and UV active molecules undergo? Use diagrams to illustrate these transitions.
 [6 Marks]
- b. Discuss the effect of the slit width on the resolution of a spectrophotometer and the adherence to Beer's law. [5 Marks]
- c. State Beer's Law and explain its importance in spectrophotometry. Use appropriate equations to explain [7 Marks]
- d. Draw a schematic diagram of a flame atomic absorption spectrophotometer.

[7 Marks]

[Total: 25 Marks]

QUESTION TWO

- a. Briefly describe the working principles of refractive and diffractive monochromators. [10 Marks]
- b. Titanium is reacted with hydrogen peroxide in 1 M sulphuric acid to form a coloured complex. If a 3.31×10^{-3} absorbs 31.5% of the radiation at 415 nm, calculate:
- i) The absorbance?

[3 Marks]

ii) Transmittance and %T for a 6.00 ×10⁻³ M solution?

[4 Marks]

c. List four attributes of merit when choosing a suitable detector for instrumental methods? [8 Marks]

[Total: 25 Marks]

QUESTION THREE

- a. Discuss the advantage(s) of the internal calibration method over external calibration method? [6 Marks]
- b. Explain how flame temperature affects the sensitivity of a flame atomic absorption spectrophotometer. [5 Marks]
- c. Why is the nebulization of liquid samples important in atomic absorption spectrophotometry? [3 Marks]
- d. Draw and label a hollow cathode lamp.

[6 Marks]

e. What is the function of the reference beam in a double beam AAS instrument?

[5 marks]

[Total: 25 Marks]

QUESTION FOUR

- a. What are the implications of having a signal to noise ratio of 1 for a given signal?

 [6 Marks]
- b. Outline the sample preparation steps for the analysis of a solid sample using IR spectroscopy.
 [7 Marks]
- c. Explain the term deviation from Beer's law and list the different types of deviations
 [6 Marks]
- d. What are the possible causes for signal suppression/amplification in instrumental analysis? Suggest possible corrective measures for each scenario. [6 Marks]
 [Total: 25 Marks]

QUESTION FIVE

- a. The molar absorptivity of aqueous solutions of o-nitrophenol at 345 nm is 6.17×10^{-1} L cm⁻¹ mol⁻¹. Calculate the permissible range of o-nitrophenol concentrations if the transmittance is to be less than 78% and greater than 7%. Assume measurements are made in a 1.5 cm cuvette. [8 Marks]
- b. What is the relationship between absorbance and transmittance in absorption spectrophotometry? [3 Marks]
- c. Obtain an expression that relates the two terms in (b). [2Marks]
- d. For each of the following spectral regions, suggest an appropriate monochromator and state the reasons for each choice
 - (i) Microwave
 - (ii) IR
 - (iii) Visible
 - (iv) X-ray

[12 Marks]

[Total: 25 Marks]

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	С	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	e	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
•		6.2364 X 10 L Torr K-1 mol-1
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = \hbar/2\pi$	1.054 57 X-10 ⁻³⁴ J s
Avogadro constant	N_{A}	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	m_{ϵ}	9.109 39 X 10 ³¹ Kg
proton	m_p	1.672 62 X 10 ⁻²⁷ Kg
neutron .	m_{μ}	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{o} = 1/c^{2}\mu_{o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε,	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ_o	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
•		$4\pi \times 10^{-7} \mathrm{T}^2 \mathrm{J}^1 \mathrm{m}^3$
Magneton		
Bohr	$\mu_B = e\hbar/2m_e$	9.274 02 X 10 ⁻²⁴ J T ¹
nuclear	$\mu_N = e \hbar / 2 m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	ge	2.002 32
Bohr radius	$a_{o} = 4\pi \epsilon_{o} \hbar/m_{e}c^{2}$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{\star \star} = m_e e^4/8 h^3 c \epsilon_e^2$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration	, ,	
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	↑ G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV =	4.184 joules 1.602 2 X 1	1 erg 1 eV/n	nolecul	e ·	==	1 X 1 96 48	0 ^{,7} J	[- ₁
Prefixes	f p femto pico 10 ⁻¹⁵ 10 ⁻¹²	micro	milli	centi	deci	k kilo 10³	M mega 10 ⁶	G giga 10°

PERIODIC TABLE OF ELEMENTS

	81	VIIIA	4.003	Hc.	~	20.180	Š	2	39.948	Ar	88	83.80	Ÿ	36	131.29	×	54	(222)	Z.	86				
	17	VIIA		,	• ,	18.998	لتر	D.	35.453	Ü		79.904	Ŗ	35	126.90	-	53	(210)	At	85			•	
	91	ΑΙΑ				15,999	0	60	32.06	co	9	78.96	Sc	34	127.60	Ţ	25	(209)	2	84				
	15	۲ ۲				14.007	z	۲-	30.974	<u>م</u>	13	74.922	As	8	121.75	Sp	5!	208.98	ä	83				
	4.	Υ×				12.011	ບ	9	28.086	Š	4	72.61	පී	32	118.71	Sn	20	207.2	Pb	82				
	13	IIIA				- 10.811	m •	رم ا	26.982	¥	22	69.723	ű	31	114.82	II.	49	204.38	E	≅				
	12	113				Atomic mass -	Symbol -	Atomic No.				65.39	Zu	30	112.41	Ç	48	200.59	Hg	80				
	=	13				Atom	Syn	Atom				63.546	õ	23	107.87	Ag	47	196.97	Αu	7				
	9											58.69	Z	28	106.42	Pd	46	195.08	杰	200	(267)	Cun	<u>0</u>	
GROUPS	6	VIIIB								ENTS		58.933	රි	27	102.91	Rh	45	192.22	Ir	11	(392)	Une	60	
G	∞									ELEM		55.847	<u>ا</u>	26	101:07	Ru	44	190.2	Š	76	(265)	Uno	801	
	7	VIIB								TRANSITION ELEMENTS	 	54.938	Σ	-		Ţ		186.21	Re		(292)			
	9	VIB								TIRAN		51.996	ပံ	24	95.94	Μ°	42	183.85	⋧	74	(592)	Unh	90	
	\$	ΥB										50.942	>	23	92.906	ź	41	180.95	Тa	7.3	(292)	Ha	501	
i	4	IVB										47.88	Ë	22	91.224	Z.	40	178.49	Hŧ	72	(261)	Rf	104	
	3	1118			4				······			44.956	Sc	77	88.906	>	3	138.91	<u>"</u> "	57	(222)	**Ac	68	
	2	≦ E				9.012	Be	4	24:305			40.078	ర్	2	87.62	Š	28 28	137.33	Ва	56	226.03	8	90 00	
	-	_	1.008	=	-	6.941	<u>፲</u>	r.	22.990	ž	=	39.098	×	2	85.468	Rb	37	132.91	ű	55	223	Ľ.	87	
		PERIODS					7			т			4			ĸ			9			_		

	14		
Cm Bk 97	ξ. 4 % 8 %	Np Pu Am 93 94 95	

*Lanthanide Series

**Actinide Series