UNIVERSITY OF SWAZILAND Faculty of Health Sciences Department of Environmental Health Science

B.Sc. Degree in Environmental Health Science SUPPLEMENTARY EXAMINATION PAPER JULY 2016

TITLE OF PAPER : INSTRUMENTAL METHODS FOR ENVIRONMENTAL

ANALYSIS

COURSE CODE

: EHS573

DURATION

: 2 HOURS

MARKS

: 100

INSTRUCTIONS: THERE ARE FIVE QUESTIONS IN THIS EXAM.

: ANSWER ANY FOUR OUT OF THE FIVE THE QUESTIONS

: EACH QUESTION CARRIES A MAXIMUM MARK OF 25%

EHS573 SUPPLEMENTARY JULY 2016

Question 1

- a) What is 'column efficiency' in gas chromatography? How is its value influenced by 'loading' of the column, N (number of theoretical plates) and H (height of plate)? What other factors influence it? (8)
- b) (i) State the advantages and disadvantages of open tubular columns over packed columns used for GC analysis. Briefly account for the difference (5)
 - (ii) Give two structural differences between them (5)
- c) In a chromatographic analysis of a mixture of chlorinated pesticides, in which a 2.0 m long column was used, a peak with retention time t_r, of 8.68 min and a baseline width of 0.36 min, was identified as dieldrin.
 - (i) Calculate N and H for this column (5)
 - (ii) Determine the capacity factor for dieldrin if the dead time, t_m , for the column is 0.30 Min. (2)

[25]

Question 2

- a) Distinguish between the following terms;
 - (i) Precision and accuracy
 - (ii) Precision and bias (4)
- b) What are the factors to consider before choosing an appropriate method for the analysis of a given sample? (4)
- c) Why is sample pre-treatment necessary before carrying out the actual analysis on a give sample? Give four examples of pre-treatment steps often employed in analytical laboratories. (5)
- d) Why should the chemical environment of a sample be properly controlled during analysis? Give one such control measure that could be taken to assure accuracy of obtained data.
- e) State sequentially, the steps that should be followed in solving a given analytical problem (i.e. in the analysis of a given sample). (5)
- f) Define the detection limit of an analytical method. Using a labelled figure, illustrate the useful concentration range of an analytical method. (4)

[25]

Question 3

a) Give three advantages of thin layer chromatography over paper chromatography. (3) b) For TLC; Give two examples each of stationary phase and mobile phase (i) (4) (ii) What stationary phase would be used for a polar compound and a weakly polar compound? (2)c) Briefly describe the procedure for chromatogram development and detection of analyte spots in TLC. (7)d) (i) Define R_f value for TLC (1) (ii)Using a diagram, illustrate how it can be measured. (4) e) Give four factors that influence the R_f value of a compound (4) [25]

Question 4

- a) Draw and label a schematic diagram of gas chromatography instrument. (10)
- b) For a GC detector, discuss;
 - (i) Its function
 - (ii) The factors determining its choice
 - (iii) Its desirable properties

(9)

c) Discuss standard addition calibration the key assumptions are necessary to apply standards addition calibration. (6)

[25]

Question 5

The concentration of sulphur in a sample of diesel has been given as 50 ppm. However, when a chemist analysed the sulphur content of the sample 5 times, she obtained the following results; 43 ppm, 61 ppm, 52 ppm, 48 ppm, and 44 ppm.

- (a) Calculate the average, standard deviation, coefficient of variation and standard error of the data set. (12)
- (b) Calculate the 95% confidence interval. (4)
- (c) If the accepted value for the concentration of sulphur in the sample is 50 ppm, are the results for this set of measurements significantly different at the 95% confidence level by the *t*-test.
- (d) Use the Q test to reject any outliers in the data set (4)

[25]

Appendix 1

Tabulated values for the Q-test

n	68%	90%	95%	98%	99%
3	0.822	0.941	0.970	0.988	0.994
4	0.603	0.765	0.829	0.889	0.926
5	0.488	0.642	0.710	0.780	0.821
6	0.421	0.560	0.625	0.698	0.740
7	0.375	0.507	0.568	0.637	0.680
8	0.343	0.468	0.526	0.590	0.634
9	0.319	0.437	0.493	0.555	0.598
10	0.299	0.412	0.466	0.527	0.568
12	0.271	0.375	0.425	0.480	0.518
14	0.250	0.350	0.397	0.447	0.483
16	0.234	0.329	0.376	0.422	0.460
18	0.223	0.314	0.358	0.408	0.438
20	0.213	0.300	0.343	0.392	0.420

Table 3.2
Values of F at the 95% Confidence Level

	$\nu_1 = 2$	3	4	. 5	6	7	8	9	10	15	20	30
$v_1 = 2$	19.0	19.2	19.2	19.3	19.3	19.4	19,4	19.4	19.4	19.4	19.4	19.5
3	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.70	8.66	8.62
4	6.94	6.59	6,39	6.26	6.16	6.09	6.04	6.00	5.96	5.86	5.80	5.75
5	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.62	4.56	4.50
6	5.14	4.76	4.53	4,39	4.28	4.21	4.15	4.10	4.06	3.94	3.87	3.81
7	4.74	4,35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.51	3.44	3.38
8	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.22	3:15	3.08
9	4.26	3.86	3.63	3.48	3.37	` 3.29	3.23	3.18	3.14	3.01	2.94	2.86
10	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98 -	2.85	2.77	2.70
15	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.40	. 2.33	2.25
20	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.20	2.12	2.04
30	3.32	2.92	2.69	2.53	2.42	2.33	2,27	2.21	2.16	2.01	1.93	1.84

Table 3.] Values of t for v Degrees of Freedom for Various Confidence Levels*

ν	Confidence Level								
	90%	95%	99%	99.5%					
1	6.314	12.706	63.657	127.32					
2	2.920	4.303	9.925	14.089					
3	2.353	3.182	5.841	7.453					
4	2.132	2,776	4.604	5.598					
5	2.015	2.571	4.032	4.773					
6 .	1.943	2.447	3.707	4.317					
7	1.895	2.365	3.500	4,029					
8	1.860	2.306	3.355	3.832					
9	1.833	2.262	3.250	3.690					
0	1.812	2.228	3.169	3.581					
5	1.753	2.131	2.947	3.252					
0	1.725	2.086	2.845	3.153					
5	1.708	2.060	2.787	3.078					
)	1.645	1.960	2.576	2.807					

⁼ N - 1 =degrees of freedom.

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	С	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	e	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_{\lambda}e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_{A}k$	8.314 51 J K ⁻¹ mol ⁻¹
	•	8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K-1 mol-1
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$h = h/2\pi$	1.054 57 X-10 ⁻³⁴ J s
Avogadro constant	N _A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	и	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	m,	9.109 39 X 10 ³¹ Kg
proton	m_p	1.672 62 X 10 ⁻²⁷ Kg
neutron .	m_n	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{\rm o} = 1/c^2 \mu_{\rm o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε,	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μο	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
		4π X 10 ⁻⁷ T ² J ⁻¹ m ³
Magneton		
Bohr	$\mu_B = e\hbar/2m_e$	9.274 02 X 10 ³⁴ J T ³
nuclear	$\mu_N = e\hbar/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	g _e	2.002 32
Bohr radius	$a_o = 4\pi \epsilon_o \hbar / m_e c^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 X 10 ³
Rydberg constant	$R_{-} = m_e e^4 / 8h^3 c \epsilon_o^2$	$1.097\ 37\ X\ 10^7\ m^{-1}$
Standard acceleration	∔	
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV =	4.184 joules (J)		1 erg			245	i X 10 ⁻⁷ J			
	1.602 2 X 10 ⁻¹⁹ J		1 eV/molecule			245	96 485 kJ mol ⁻¹			
Prefixes	femto	p pico 10 ⁻¹²	nano	μ micro 10 ⁻⁶	milli			k kilo 10 ⁾	M mega 10 ⁶	G giga 109

والما ويقوا المالا والمالية المالية ا	4not - 175	SA DENIA	14 V	-0.0101-022	20 300000	12 4 17
8A (18) (18) Ne 20.18	36 .Kr 83.80	54 X e 131.29	86 Rn (222)	118 Uuo (294)	71 Lu 174.97	103 Lr [262]_
7A (17)	35 Br 79.90	53 126.90	85 At [210]	117 Uus [294]	70 Yb 173.04	102 No [259]
6A (16)	34 78.96	52 Te 127.60	84 (Po (209)	116 Uuh (293)	69 Tm 168.93	101 Md (258)
5A (15)	33 AS 74.92	51 Sb 121.76	83 Bi 208.98	115 Uup (288)	68 Er 167.26	100 Fm [257]
4A (14)	32 Ge 72.64	50 Sn 118.71	82 Pb 207.2	114 Uuq [289]	67 H0 164.93	99 ES
34 (13) (13) (13) (13) (13) (13) (13) (13)	31 Ga 69.72	49 In 114.82	81 TI 204.38	113 Uut [284]	66 Dy 162.50	98 Cf (251)
28 (12)	30 Zn 65.41	48 Cd 112.41	80 Hg 200.59	112 Ch [285]	65 Tb 158.93	97 BK (247)
, 1B (11)	CO 63.55	47 Ag 107.87	79 Au 196.97	111 Rg (280)	64. Gd 157.25	96 Cm [247]
(10)	28 S.69 58.69	46 Pd 106.42	78 Pt 195.08	110 DS [281]	63 Eu 151.96	95 Am [243]
88 66	27 CO 58.93	45 Rh 102.91	77. r 192.22	109 Mt [276]	62 Sm 150.36	94 Pu [244]
(®	26 Fe 55.85	44 Ru 101.07	76 0s 190.23	108 HS [270]	61 Pm (145)	93 Np 1237
78 , (7)	25 Mn 54.94	7c (98)	75 Re 186.21	107 Bh [272]	60 Nd 144.24	92°°° U 238.03
6B (6)	52.00 52.00	42 Mo 95.94	74 W 183.84	Sg [27]]	59 Pr 140.91	91 Pa 231.04
5B (5)	23 / 50.94	41 Nb 92.91	73 Ta 180.95	105 Db (268)	Se 20 140.12	90 Th 232.04
4B (4)	22 Ti 47.87	40 Zr 91.22	72 Hf 178.49	104 Rf (267)	ides	es
38 (3)	21 Sc 44.96	39 4 × 39	57 La 138.91	89 AC (227)	anthanides	Actinides
2.4 (2.2) Se 4 (2.3) Se 4 (2.3) Se 4 (3.3) Se 24.31	0 2 0 0 80.08	38. Sr 87.62	56 Ba 137.33	88 Ra 1226]		
11A 1.008 1.008 1.008 1.008 1.008	19 7 39.10	85.47	55 CS 132.91	87 Fr [223]		
3 8	sboin99 4	വ	9	7		