UNIVERSITY OF SWAZILAND Faculty of Health Sciences Department of Environmental Health Science

B.Sc. Degree in Environmental Health Science MAIN EXAMINATION PAPER DECEMBER 2015

TITLE OF

: Instrumental methods for Environmental Analysis

PAPER

COURSE CODE

: EHM204

DURATION

: 2 HOURS

MARKS

: 100

INSTRUCTIONS: THERE ARE FIVE QUESTIONS IN THIS EXAM

: ANSWER ANY FOUR OUT OF THE FIVE

QUESTIONS

: EACH QUESTION CARRIES A MAXIMUM MARK OF

25%

EHM204 MAIN EXAM **DECEMBER 2015**

QUESTION 1

- 1.1 Standards addition is a commonly used method in many practical analyses.
 Discuss when an analyst would choose a standards addition over a method based on use of a calibration curve, and what key assumptions are necessary to apply standards addition.
 (5)
- 1.2 What is the difference between an instrument detection limit and a method detection limit? (2)
- 1.3.1 Discuss solvent extraction and include its disadvantages in the extraction of organics from water samples. (5)
- 1.3.2 Are multiple batch extractions a solution for the disadvantages you have given in your answer for question 1.3.1?
- 1.4 Explain how solid-phase microextraction (SPME) and solid phase extraction work.

[25]

QUESTION 2

- 2.1 In chromatography, what is meant by retention factor? (4)
- 2.2 Discuss the Plate theory in gas chromatography (use diagrams and equations in your discussion). (9)
- 2.3 Explain the principle of each of the following detectors used in GC, and to which kinds of analytes do the detectors respond:
- (a) Flame ionization detector (FID)
- (b) Electron capture detector (ECD)

(12)

[25]

QUESTION 3

3.1 Nitrite was measured by two methods in samples of rainwater and drinking Water. Nitrite analysis results are shown in table 1.

Table 1: Nitrite analysis data for the two methods

	Gas Chromatography	Spectrophotometry
Rainwater	0.069 ±0.005	0.063 ±0.008
	n=7	n=5
Drinking water	0.078 ±0.007	0.087 ±0.008
	n=5	n=5

- 3.1.1 What statistical test can be carried out to determine whether the two methods are in agreement? With the data provided, is the statistical test possible? If not, justify.

 (6)
- 3.1.2 For each method, does drinking water contain significantly more nitrite than rainwater at 95% confidence? (5)
- 3.2 The gravimetric analysis of a Nickel compound was developed and compared to a spectrophotometric method. The w/w percentage of Nickel in the compound was reported in table 2.

Table 2: Analysis results from two methods

Gravimetric analysis (w/w%)	Spectrophotometric analysis (w/w%)
20.10	18.89
20.50	19.20
18.65	19.00
19.25	19.70
19.40	19.40
19.90	

(a) Is there significant difference between the two methods? (4)

- (b) In each data set, are there outliers? Use the appropriate statistical test to reject data points. (5)
- (c) What are the confidence limits in both methods?

(5)

[25]

Question 4

- 4.1 A TLC plate was developed using a 30 mL, 1:4:1 mixture of ethyl acetate, diethyl ether and hexane, respectively. Calculate the elution strength of this solution. (Required data is provided)
- 4.2 Briefly explain why such a mixture would be used as opposed to using pure solvents. (2)
- 4.3 Define or give a mathematical equation for the following terms:
 - 4.3.1 Precision
 - 4.3.2 Gaussian distribution
 - 4.3.3 Determinate error
 - 4.3.4 Primary standard

(8)

- 4.4 What are the advantages of microwave acid digestion over wet digestion?
 - (3)
- 4.5 What sample preparation steps are involved in the analysis of metallic analytes in biological samples? (4)

[25]

Question 5

Calibration methods and curves necessary in many chemical measurements involving electrochemistry, spectroscopy and chromatography.

- 5.1 Many aspects of a calibration are part of the "figures of merit" for an analysis.

 Define 5 figures of merit which these could be evaluated in the process of establishing a calibration.

 (10)
- 5.2 A redox reaction of permanganate with hydrogen peroxide to produce oxygen gas and Mn(II) is:

4

H ₂ O ₂ -		O2
17202		U 2

- 5.2.1 Complete and balance half reactions for both schemes by adding e-, H_2O and H^+ , then write a balanced net ionic equation for the reaction. (7)
- 5.3 Describe the components that make up a gas chromatography instrument. You may use box diagram illustrations in your answer. (8)

[25]

Appendix 1

Tabulated values for the Q-test

4 - 3			1777/2		
	0.822	0.941	0.970	0.988	0.994
	0.603	0.765	0.829	0.889	0.926
	0.488	0.642	0.710	0.780	0.821
	0.421	0.560	0.625	0.698	0.740
	0.375	0.507	0.568	0.637	0.680
	0.343	0.468	0.526	0.590	0.634
1	0.319	0.437	0.493	0.555	0.598
-30	0.299	0.412	0.466	0.527	0.568
	0.271	0.375	0.425	0.480	0.518
	0.250	0.350	0.397	0.447	0.483
	0.234	0.329	0.376	0.422	0.460
	0.223	0.314	0.358	0.408	0.438
11:	0.213	0.300	0.343	0.392	0.420

Table 3.2
Values of F at the 95% Confidence Level

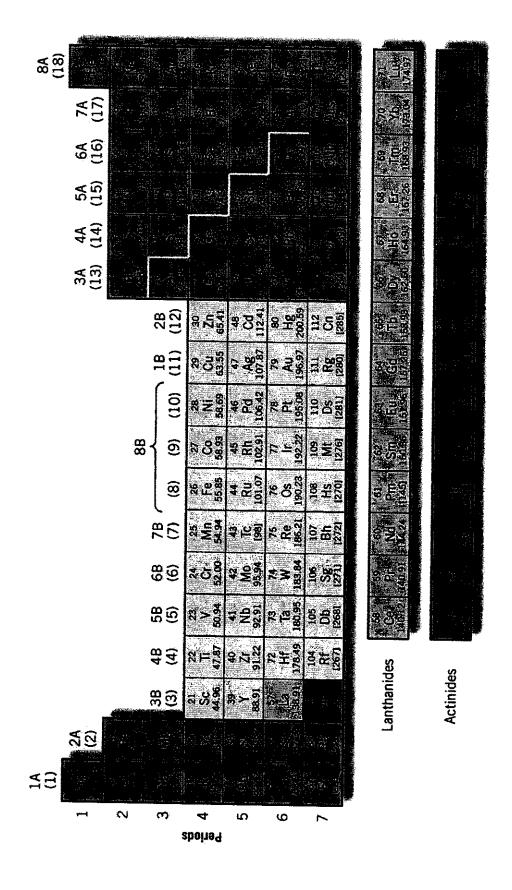
	$v_1 = 2$	3	4	. 5	6	7	8	9	10	15	20	30
$\nu_2 = 2$	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	19.5
3	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.70	8.66	8.62
4	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.86	5.80	5.75
5	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.62	4.56	4.50
6	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	3.94	3.87	3,81
7	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.51	3.44	3.38
8	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.22	3:15	3.08
· 9	4.26	3,86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.01	2.94	2.86
10	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98 -	2.85	2.77	2.70
15	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.40	2.33	2.25
20	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.20	2.12	2.04
30	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.01	1.93	1.84

Table 3.] Values of t for ν Degrees of Freedom for Various Confidence Levels*

	,	Confidence Level						
ν	90%	95%	99%	99.5%				
1	6.314	12.706	63.657	127.32				
2	2.920	4,303	9.925	14.089				
3	2,353	3.182	5.841	7.453				
4	2.132	2.776	4.604	5.598				
5	2,015	2.571	4.032	4.773				
6 ` '	1.943	2.447	3.707	4.317				
7	1.895	2.365	3.500	4.029				
8	1,860	2,306	3.355	3.832				
9.	1.833	2.262	3.250	3.690				
Ó	1.812	2.228	3.169	3.581				
5	1.753	2.131	2.947	3.252				
0	1.725	2.086	2.845	3.153				
5	1,708	2,060	2.787	3.078				
i	1.645	1.960	2.576	2.807				

⁼ N - 1 = degrees of freedom.

General data and fundamental constants


Quantity	Symbol	Value
Speed of light	c	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	e ·	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 104 C mol-1
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻³
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K-1 mol-1
Planck constant	h	6.626 08 X 10 ³⁴ J s
	$h = h/2\pi$	1.054 57 X-10 ⁵⁴ J s
Avogadro constant	N_A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass .		•
electron	$\mathbf{m_e}$	9.109 39 X 10 ³¹ Kg
proton	. m _p	1.672 62 X 10 ²⁷ Kg
neutron .	m,	1.674 93 X 10 ²⁷ Kg
Vacuum permittivity	$\varepsilon_{\diamond} = 1/c^2 \mu_{\diamond}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε.	1.112 65 X 10 N J 1 C2 m-1
Vacuum permeability	μ°	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
		$4\pi \times 10^{-7} \mathrm{T}^2 \mathrm{J}^{-1} \mathrm{m}^3$
Magneton		
Bohr	$\mu_{\rm B} = \epsilon \hbar/2m_{\star}$	9.274 02 X 10 ³⁴ J T ³
nuclear	$\mu_N = ch/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	8e	2.002 32
Bohr radius	$a_o = 4\pi \varepsilon_o \hbar / m_e c^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 X 10 ³
Rydberg constant	$R_{-} = m_e^4/8h^3c\epsilon_e^2$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration	;	
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV =	4.184 joules 1.602 2 X 10		1 erg 1 eV/n	nolecul	e	= =	1 X 10 ⁻⁷ J 96 485 kJ mol ⁻¹		ļ- ¹
Prefixes	f p femto pico 10 ⁻¹⁵ 10 ⁻¹²	и папо 10 ⁻⁹	μ micro 10-6	milli		d deci 10 ⁻¹	k kilo 10³	M mega 10°	G giga 10°

Solvent MF MW	Hexane C ₆ H ₁₄ CH ₃ (CH ₂) ₄ CH ₃ 86.17	Toluene C ₇ H ₈ C ₆ H ₆ CH ₃ 92.13	Diethyl ether C ₄ H ₁₀ O CH ₃ CH ₂ OCH ₂ CH ₃ 74.12	Dichloromethane CH ₂ Cl ₂ CH ₂ Cl ₂ 84.94	Ethyl Acetate C ₄ H ₈ O ₂ CH ₃ CO ₂ CH ₂ CH ₃ 88.10	Acetone C ₃ H ₆ O CH ₃ COCH ₃ 58.08	Butanone C ₄ H ₈ O CH ₃ CH ₂ COCH ₃ 72.10	1-Butanol C ₄ H ₁₀ O CH ₃ CH ₂ CH ₂ CH ₂ OH 74.12	Propanol C ₃ H ₈ O CH ₃ CH ₂ CH ₂ OH 60.09	Ethanol C ₂ H ₆ O CH ₃ CH ₂ OH 46.07	Methanol CH ₄ O CH ₃ OH 32.04	
F Bp (°C) V Density (g/mL)	68.7 7 0.659	110.6 3 0.867	O 34.6 2 0.713	39.8 1.326	O ₂ 77.1 0 0.901	S 56.3 0.790	90.1 0 0.805	DO 117.7 2 0.810	9 82.3 0.785	O 78.5 0 0.789	O 64.7 0.791	
Hazards*	Flammable Toxic	Flammable Toxic	Flammable Toxic, CNS Depressant	Toxic, Irritant Cancer suspect	Flammable Irritant	Flammable Irritant	Flammable Irritant	Flammable Irritant	Flammable Irritant	Flammable Irritant	Flammable Toxic	
Dipole	0.08	0.31	1.15	1.14	1.88	2.69	2.76	1.75	1.66	1.70	1.7	
Elution Stength	0.01	0.22	0.29	0.32	0.45	0.43	0.39	0.47	0.63	0.68	0.73	

• • •

