UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2014/2015

TITLE OF PAPER : CHEMISTRY FOR HEALTH AND ENVIRONMENTAL SCIENCES

COURSE CODE : HSC106

TIME

TOTAL MARKS : 100 MARKS

EXAMINER : DR. J. M. THWALA

INSTRUCTIONS : ANSWER <u>ALL QUESTIONS</u> FROM SECTION A

THREE (3) HOURS

(TOTAL 40 MARKS) AND <u>ANY TWO QUESTIONS</u> FROM SECTION B (EACH QUESTION IS 30 MARKS AND A TOTAL

OF 60 MARKS)

NON-PROGRAMMABLE ELECTRONIC CALCULATORS MAY BE USED.

USE THE ANSWER SHEET IS PROVIDED FOR ANSWERING SECTION A

A PERIODIC TABLE AND OTHER USEFUL DATA HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER

PLEASE DO NOT OPEN THIS EXAMINATION PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

SECTION A

MULTIPLE CHOICE [40 MARKS]

Indicate the best option for each of the following multiple choice questions:

1.	What is the che (A) I	emical symbol (B) Fe	of iron? (C) Ir	(D) In	(E) F	
2.	Which of the form $(A)^{32}S^{2-}(Z = (D)^{35}Cl^{-}(Z =$	ollowing has 1 16) 17)	7 protons, 18 n (B) 40 Ar (Z = (E) 41 P ³⁻ (Z =	eutrons, and 18 18) = 15)	8 electrons? (C) ¹⁸ Si (Z = 14)	
3.	The simplest al (A) ethylene	lkyne is(E) propene	(B) ethane		(C) acetylene	(D) propyne
4.	(B) chloring (C) chloring (D) chloring	e melts at -10 e requires ener e burns in hyd	1 °C. rgy to boil. rogen to form h		ide.	
5.	If the molar ma (A) 177.4 g		_		3.022 moles Ni? (E) 19.43 g	
6.	In the balanced	l equation for			droxide, Ca(OH) ₂ , and ficient of hydrogen? (E) ½	hydrogen, H ₂ .
7.	orbital is the el	ectron located	_	ntum numbers (D) 4d	$n = 4$, $l = 3$, $m_l = 0$. (E) 3d	In what type of
8.	Alkenes have to (A) C_nH_{2n}			(D) C _n H _n	(E) C _n H _{2n+1}	
9. possib	le value for the		•	-	n_l of -2 . What is the n? (E) -1	lowest
10.	,		,		etron? The answers a	re expressed as
			,	2		

		B) (3, 2, 2, 1) E) (3, 1, -1, +!		, 2, 2, -½)
11.	What is the ground state electron (A) [Ar]3d ¹⁰ 4s ² 4p ² (B) (C) [Ar]3d ¹⁰ 4s ² 4p ⁵ (B) (E) [Ar]3d ¹⁰ 4s ² 4p ⁴	on configuration B) [Ar]3d ¹⁰ 4s ² D) [Ar]3d ¹⁰ 4s ²	n of a bromin 4p ⁶ 24p ³	e atom?
12.	What is the electron configuration (A) [Ar]3d ⁵ 4s ² (B) [Ar]3d ⁵ 4s ¹ (B)	ion of the Fe ²⁺ B) [Ar]3d ⁵ E) [Ar]3d ⁴ 4s ²	ion? (C) [A	ar]3d ⁶
13.	One liter of 1.0 M K ₃ PO ₄ solution (A) One mole of potassium ior (C) One mole of phosphorus at (E) Four moles of phosphate ion	ns (toms (llowing? e of oxygen atoms
14.	An alkane used primarily for he (A) methane (B) ethane (C)			(E) hexane
15.	Which of the following structure	res is a seconda	ary alcohol?	
	(A) CH ₃ OH		(B) CH ₃ -CH OH	
	(C) CH ₃ -O-CH ₂ -CH ₃	((D) CF CH ₃ -CF OF	H-CH ₃
	(E) CH ₃ CH ₂ OH			•
16.	The ion involved in the contract (A) Na ⁺ (B) K ⁺ (Contract (B) K ⁺ (Contract (B) K ⁺ (B) K ⁺ (B) K ⁺ (Contract (B) K ⁺ (B) K ⁺ (B) K ⁺ (Contract (B) K ⁺ (B) K ⁺ (Contract (B) K ⁺ (Contract (B) K ⁺ (B) K ⁺ (B) K ⁺ (Contract (B) K ⁺ (B) K ⁺ (Contract (B) K ⁺ (B) K ⁺ (B) K ⁺ (B) K ⁺ (Contract (B) K ⁺ (B) K	ction of the hea C) Fe ²⁺ (rt is (D) Mg ²⁺	(E) Zn ²⁺
17.	$50 \mu g = mg$ (A) 0.050 (B) 0.50	C) 5.0 ((D) 50	(E) 0.0050
18.	An example of a mixture is	3		

	(A) water	` '	(C) iron	(D) sand	(E) salt	
19.	The oxidation (A) 2	number of S in (B) 4	n H ₂ SO ₄ is (C) 5	(D) 8	(E) 6	
20.	_	owing balance	_			
		$O_2 \rightarrow 2H_2O$ rams of water v	vill be produced	l from 2 moles	of H ₂ ?	
	(A) 9	(B) 18	(C) 72	(D) 36	(E) 27	
21.	•				o prepare 400 mL of a 1% solutio	n?
	(A) 10	(B) 40	(C) 100	(D) 400	(E) 4	
22.	_	d CH ₃ COCH ₃	is . (B) a ketone		(C) an ether	
	(A) an ester(D) an aldehy	yde	(E) an alcoho	ol	(C) an ether	
23.	A combinatio	n of sand, salt,	and water is an	example of a	·	
	(A) homogen (D) pure subs		(B) compound (E) heterogen		(C) solid	
24.		•	li metals reacts	•		
	(A) Cs	(B) Rb	(C) K	(D) Na	(E) Li	
25.		ollowing additi + 0.01 =	on to the correc	et degree of pre	ecision.	
	(A) 2	(B) 2.244	(C) 2.250	(D) 2.25	(E) 2.24	
26.			can be formed f	rom 6.50 mole	s of Fe?	
		$3O_2 \rightarrow 2Fe_2$	₂ O ₃ (B) 1.04 x 10) ³	(C) 5.19	
	(D) 2.08 x 10) ³	(E) 653		(-,	
27.		-	_	O ₃ and 100 g (CO are mixed and react?	
		$+ 3CO \rightarrow 2$ (B) 35.0 g	(C) 147 g	(D) 70.0 g	(E) 200 g	
28.	19.9 g H ₂ O a yield of H ₂ O?		en 45.0 g Mg(C	OH) ₂ react with	excess HCl. What is the percen	ıtage
	• •	, -	$\rightarrow 2H_2O + M_1$ (C) 44.2%	_	(E) 100%	
29.					nL of 3.00 M NaNO ₃ ?	
	(A) 31.9 g	(D) 40.1 g	(C) 227 g	(D) 3.34 g	(L) 20.3 g	
				4		

30.	Convert the following figures to the unit indicated 2.02 kg/L pg/ml
	(A) 2.02×10^{15} (B) 2.02×10^{-12} (C) 2.02×10^{-9} (D) 2.02×10^{-15} (E) 2.02×10^{12}
31.	Calculate the following and express your answer to the correct degree of precision. 4.6742g÷0.00371 L
	(A) 1.26×10^3 g/L (B) 1.26×10^3 g (C) 1.259×10^3 g/L (D) 1.26 L (E) 1259.89 g/l
32.	Calculate the following and express your answer to the correct degree of precision. $\frac{3.41 g - 0.02310 g}{5.2331 ml} * 0.2051 ml =$
	(A) 133 g (B) 133.00 g (C) 0.133g (D) 0.001 g (E) 0.13 g
33.	What is the derived unit for pressure?
	(A) kg/ms (B) kgm ⁻¹ s ⁻² (C) kgms ⁻¹ (D) Nm ⁻¹ (E) kgm/s
34.	Determine the derived SIU units for Density
	(A) g/ml (B) kgm ⁻³ (C) gcm ⁻³ (D) kgcm ⁻³ (E) kg/ml
35.	The temperature of a sample of water from Mbabane river was taken by an environmentalis Alicia and obtained a reading of 134 °F. What is the reading in Kelvin (A) 432 (B) 56.7 (C) 329 (D) 298 (E) 407
36.	Replicate measurements for the concentration of cadmium in waste water gave 33.5 g/ml, 35.2 g/ml, 34.7 g/ml, 30.4 g/ml and 40 g/ml. What is the percentage relative standard deviation of the sample?
	(A) 10 % (B) 34.8 % (C) 5 % (D) 3.5 % (E) 9.1 %

What are the correct reading for instrument (a) below

37.

- (A) 5.3 ± 0.1
- (B) 5.1±0.1
- (C) 4.1±0.1

- (D) 4.3±0.1
- (E) 5.30 ± 0.01
- 38. Estimate the % relative error in the readings given in 36(b) above
- (A) 21.73 %
- (B) 2.17 %
- (C) 2.27 %

(C) 14 %

- (D) 4.5 %
- (E) 5.3 %
- 39. Estimate the following % relative standard deviation in the readings given in

36(c).

- (A) 5.2 % %
- (B) 7.1 %
 - 7.1 %

- (D) 2.3 %
- (E) 1.9 %
- 40. What type of error is in instrument 36 (c) above?
 - (A) random
- (B) systematic
- (C) indeterminate

- (D) accuracy
- (E) personal

SECTION B

ANSWER ANY TWO QUESTIONS

QUESTION 1 [30 MARKS]

Briefly define the following terms [12] (a) Pauli's principle (i) (ii) Agfbau building-up principle (iii) An Element (b) (i) Classify each of the following changes as physical or chemical: The metal used in artificial hip-joint implants is not corroded by body fluids. (1) [2] [2] An antacid tablet is dissolved in water. A 175 lb patient is to undergo surgery and will be given an anaesthetic intravenously. (ii) The safe dosage of anaesthetic is 12 mg/kg of body weight. Determine the maximum dose of anaesthetic in mg that should be used using the correct degree of precision

(number of digits). [2]

Note: 1 lb = 0.4536 kg

(i) Creatinine is a substance found in the blood. An analysis of a blood

- (c) (i) Creatinine is a substance found in the blood. An analysis of a blood serum sample detected 1.1 mg of creatinine. Express this amount in grams.

 [2]
 - (ii) A hypodermic syringe was used to deliver 5.0 ml of alcohol into an empty container that had a mass of 25.12 g when empty. The container with the alcohol sample weighed 29.08 g. Calculate the density of the alcohol using the correct degree of precision (number of digits). [3]
 - (iii) A 3.455 g sample of a mixture was analysed for barium ion, Ba²⁺, by adding a small excess of sulphuric acid, H₂SO₄, to an aqueous solution of the sample. The resultant reaction produced a precipitate of barium sulphate, BaSO₄, which was collected by filtration, washed, dried and weighed. If 0.2815 g of the barium sulphate was obtained, what was the mass percentage of barium in the sample? [4]
- (d) (i) Calculate the atomic weight of chlorine, given that the naturally occurring element consists of 75.53% chlorine-35 (mass = 34.97 amu) and 24.47% chlorine-37 (mass = 36.97 amu). [3]

Question 2 [30 Marks]

(a)	Briefly discuss the differences between following pairs of terms.
	(i). Compounds and Mixtures [4]
	(ii). Colloids and solutions [4]
	(iii). Law of Multiple Proportions and Law of Conservation of Mass [4]
(b)	Which of the following events are chemical changes and which ones are physical changes.
•	(1) When heated in a pan, sugar turns brown (caramelizes). [1]
	(2) When stirred in water, table salt seems to disappear. [1]
	(3) A bleaching agent causes a coloured fabric to lose its colour. [1]
	(4) A silver fork tarnishes slowly in air. [1]
(c)	Define the Daltons' Atomic Theory. In your answer, using an example of your choice, explain the flaws (problem) with this theory. [5]
(d)	Given that the natural abundance of oxygen isotopes: ¹⁶ O is 99.76%, ¹⁷ O is 0.04% and ¹⁶ O is 0.20%, Calculate the relative atomic weight (in g/mole) of oxygen. [2]
(e)	Methane and propane are both constituents of natural gas. A sample of methane contains 5.70 of carbon atoms and 1.90 g of hydrogen atoms combined in a certain way, wherea as a sample of propane contains 4.47 g of carbon atoms and 0.933 g of hydrogen atoms combined in different way. Prove that the two compounds obey the Law of Multiple Proportions. [2]
(f)	Identify and match the correct elements of K, F, Pb, Fe, Au, P, S, Cl, Na and As represented b the pictures below: [5]

(i)----- (ii)..... (iii) (iv)..... (v).....

QUESTION 3 [30 MARKS]

a)	i) ii)	Define a buffer solution [5] Name three kinds of buffers found in the body.	[6]
b)	Briefly	discuss any one of the following:	[8]
	i) ii)	Respiratory Acidosis Metabolic Acidosis	
	In you	r discussion include the cause, the symptoms and the	treatment.
c)	depres history 52 mm	year old homeless man is rushed to Mbabane Clinic. sion. The emergency department nurse recognizes they of drug use including heroin. The arterial blood gas a Hg; and a HCO ₃ ⁻ of 28 mmol/L. i) Using the data given diagnose the condition reasons for your diagnoses. ii) What treatment would you prescribe.	his patient as having a previous ses show a pH of 7.21; total CO ₂ of
W	i) ii) iii)	rt notes on any Two of the following terms: isotonic solutions hypotonic solutions hypertonic solutions examples for each and define the use or dangers of each	[2] [2] [2] ch in the body.
Questi	on 4 [3	0 Marks]	
You m	ust use	equations and diagrams to clarify your answers in th	is question.
a) De	fine wa	ter solvency in terms of bonding to form electrolyte	solutions [6].
b) De	fine wa	iter pollution.	[4]
c) Lis	st and d	escribe Three major so irces of water pollution.	[10]
d) Ex	plain th	ne difference between permanent and temporary water	er hardness. [6]
e) Ex	plain a	ny Two methods of purification.	[4]

Question 5 [30 Marks]

a) Give the general chemical formulae for the following major classes of organic compounds.

- a) carboxylic acids
- b) aldehydes
- alcohols c)
- d) esters
- alkenes e)
- Give an example and one general use for each of the following [8] b)

- (i) Alkane (ii) Alkene
- Name the following organic compounds b)
 - a) CH₃CH₂Cl

[2]

$$extstyle{CH}_3$$
 $extstyle{CH}_3$ $extstyle{CH}_2$ $extstyle{CH}_2$ $extstyle{CH}_3$ $extstyle{CH}_3$ $extstyle{CH}_3$

b)

[2]

c) CH₃CH₂ CH₂ CH₃ [2]

[2]

e)

f)

(2)

[2]

NORMAL LABORATORY VALUES FOR BLOOD TESTS

	USUAL REFEI	RENCE RANGE
Specific Gravity		1.056
Hemoglobin Count Hb	·	Men: 14 - 18g /dL Women: 12 -16 g/dL
HCO ₃ Bicarbonate	24 - 28 mmol/L	24 - 28 mEq/L
Glucose	(3.6-6.1 mmol/L)	65 - 110 mg/dL
BUN (Blood Urea Nitrogen)	2.9 - 7.1 mmol/L	8 - 20 mg/dL
Ca ⁺²	(2.1-2.6 mmol/L)	8.5 - 10.3 mg/dL
Cl ⁻	(96-106 mmol/L)	96 - 106 mEq/L
Cholesterol		150 - 220 mg/dL
CO_2	24-29 mmol/L	24-29 mEq/L
PCO_2		35-45 mmHg
PO_2		80 - 100 mm Hg
pН		7.35 - 7.45
Fatty acids	0.3-0.8 mmol/L	0.3-2 mg/dL
Protein		6-8 μg/dL
Phosphate	1 - 1.5 mmol/L	3-4.5 mg/dL
ketone bodies		0.3-2 mg/dL
K ⁺	3.5-5 mmol/L	3.5 - 5 mEq/L
Na ⁺	136-145 mmol/L	136 - 145 mEq/L
Uric Acid	Men: 0.18 - 0.54	Men: 3 - 9 mg/dL
	Women: 0.15 - 0.46 mmol/L	Women: 2.5 - 7.5 mg/dL
		Children: 1.5 g/L (150mg/dL)

PERIODIC TABLE OF ELEMENTS

Group	-	2	8	4	S	9	7	8	6	10	11	12	13	14	15	16	17	18
	IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
Period	_																	7
	H																	He
	1.008											'						4.003
	3	4											5	9	7	8	6	10
7	Ľ	Be											<u>m</u>	Ö	Z	0	Έ.	Ze
	6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
	11	12											13	14	15	16	17	18
33	Na	Mg											A	S.	4	S	ひ	Ar
	22.99	24.31						i					26.9	28.09	30.97	32.06	35.45	39.95
	19		21	22	23		25	. 92	27	28	. 67	30	31	32	33	34	32 .	36
4	¥	Ca	i	Ξ	>	Ċ	Mn	F.	ပိ	Z	Cn	Zn	Ça	Ge	As	Se	Br	Kr
	39.10		Sc	47.90	50.94	52.01	54.9	58.85	58.71	58.71	63.54	65.37	69.7	72.59	74.92	78.96	79.91	83.80
		_	44.96					•										
	37	38	39	40	41	42	43	44	45	46	47	48	46	50	51	52	53	54
Ś	R _b	Sr	>	Zr	S S	Mo	Lc	Ru	Rh	Pd	Ag	Cq	In	Sn	$\mathbf{S}\mathbf{p}$	Te	Ι	Xe
	85.47	87.62	88.91	91.22	91.22	95.94	6.86	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
	55	99	71	72	73	74	75	9/	77	28	62		81	82	83	84	85	98
9	CS	Ba	Lu	Hť	Та	≱	Re	SO	Ļ	Pt	Au	Hg	Ξ	Pb	Bi	\mathbf{P}_{0}	At	Rn
	132.9	137.3	174.9	178.5	180.9	183.8	186.2	190.2	192.2	195.1	196.9		204.4	207.2	208.9	210	210	222
	87	88	103	104	105	106	107	108	601									
7	F.	Ra	Ľ	Und	Unp	Unh	Uns	Uno	Une									
	223	226.0	257	•	1													

	57	58	59	09	61	62	63	49	65	99	19	89	69	70
Lanthanides	La	Ce	\mathbf{Pr}	PN	Pm	Sm	Eu	PS	Tb	Dy	Ho	Er	Tm	ΧÞ
	138.9	140.1	140.9	144.2	146.9	150.9	151.3	157.3	158.9	162.5	164.9	167.3	168.9	173.0
	68	06	91	92	93	64	95	96	26	86	66	100	101	102
Actinides	Ac	Th	Pa	Þ	dN	Pu	Am	Cm	Bk	Ct	ES	Fm	Md	N _o
	227.0	232.0	231.0	238.0	237.1	239.1	241.1	247.1	249.1	251.1	254.1	257.1	258.1	255

Useful Relations	General Data		
(RT) _{298.15K} =2.4789 kJ/mol	speed of light	С	2.997 925x10 ⁸ ms-1
(RT/F) _{298.15K} =0.025 693 V	charge of proton	в	1.602 19x10 ⁻¹⁹ C
T/K: 100.15 298.15 500.15 1000.15	Faraday constant	F=Le	9.648 46x10 ⁴ C mol-1
T/Cm ⁻¹ : 69.61 207.22 347.62 695.13	Boltzmann constant	ķ	1.380 66x10 ⁻²³ J K-1
1mmHg=133.222 N m ⁻²	Gas constant	R=Lk	8.314 41 J K ⁻¹ mol-1
hc/k=1.438 78x10 ⁻² m K			8.205 75x10 ⁻² dm3 atm K-1 mol-1
1atm 1 cal 1 eV - 1cm ⁻¹		•	
25x10 ⁵ Nm-2 = 4.184 J = $1.602 189x10_{-19} \text{ J}$	Planck constant	h	6.626 18x10 ⁻³⁴ Js
=760torr =96.485 kJ/mol =1.9864x10 ⁻²³ J =1 bar		$\hbar = \frac{h}{2\pi}$	1.054 59x10 ⁻³⁴ Js
	Avogadro constant	L or Nav	6.022 14x10 ²³ mol-1
SI-units:	Atomis mass unit	n	1.660 54x10 ⁻²⁷ kg
$IL = 1000 ml = 1000cm^3 = 1 dm_3$	Electron mass	m _e	9.109 39x10 ⁻³¹ kg
1 dm = 0.1 m	Proton mass	m _p	1.672 62x10 ⁻²⁷ kg
1 cal (thermochemical) = 4.184 J	Neutron mass	m _n	1.674 93x10 ⁻²⁷ kg
dipole moment: 1 Debye = $3.335 64 \times 10^{-30} $ C m	Vacuum permittivity	$\varepsilon_o = \mu_o^{-1} c^{-2}$	8.854 188x10 ⁻¹² J-1 C ₂ m-1
force: $IN=IJ m^{-1} = Ikgms-z=10s$ dyne pressure: $IPa=INm-z=1 Jm_{-3}$	Vacuum permeability	μ°	$4\pi x 10^{-7} \text{ Js2C-2 m-1}$
$IJ = I Nm$ power: $1W = 1J s^{-1}$	Bohr magneton	$\mu_B = e\hbar/2m_e$	9.274 02x10 ⁻²⁴ JT-1

magnet	ic flux:	magnetic flux: 1T=1Vsm ⁻²⁼ 1JCsm-2	.7=1.J	Csm-2		current: 1A=1Cs-1	4=1Cs-1		Nuclear magneton	$\mu_{\rm N} = e\hbar/2m_{\rm p}$	5.05079x10 ⁻²⁷ JT-1
<u>Prefixe</u>	:S:								Gravitational constant G		6.67259x10-11 Nm2kg-2
Ъ	п	m	ш	၁	p	ķ	M	ß	Gravitational	0.0	9.80665 ms ⁻²
pico	nano	micro	micro milli centi	centi	deci	kilo	mega gig	giga	acceleration		
10-12 10-9	6-01	10-6	10-3 10-2		10.1	103	106	109	Bohr radius	ao	5.291 77x10 ^{-11 m}

CANDIDATES' ID NUMBER:	DATE OF EXAM:
EXAMINATION CENTRE:	COURSE CODE:
Instructions:	

- Fill in the correct answers for questions 1-40 by making one cross (X) for each question in the correct grid below. Each question is worth one mark. Total marks are 40.
 No grade will be earned if more than one cross is made for any one question.

cross (X) for each question in the correct grid below. Example X QUESTIONS 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30.	<u>Do not wi</u> in this colu
Example X QUESTIONS 1. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 33.	
QUESTIONS 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33.	
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33.	
3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33.	
3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33.	
5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33.	
6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33.	
7. 8. 9. 10. 11. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33.	
8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 33.	
9. 10. 11. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33.	
10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33.	
11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33.	
12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33.	
13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33.	
14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33.	
15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 33.	
16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33.	
17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33.	
18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33.	
19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33.	
20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33.	
21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33.	
22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33.	
23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33.	
24. 25. 26. 27. 28. 29. 30. 31. 32. 33.	
25. 26. 27. 28. 29. 30. 31. 32. 33.	
26. 27. 28. 29. 30. 31. 32. 33.	
27. 28. 29. 30. 31. 32. 33.	
28. 29. 30. 31. 32. 33.	
29. 30. 31. 32. 33.	
30. 31. 32. 33.	
31. 32. 33.	
32. 33.	
33.	
34.	
35.	
36.	
37.	
38.	
39.	