UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2014/2015

TITLE OF PAPER:

CHEMISTRY FOR HEALTH AND ENVIRONMENTAL

SCIENCES

COURSE CODE

HSC106

TIME

THREE (3) HOURS

TOTAL MARKS

100 MARKS

EXAMINER

DR. J. M. THWALA

INSTRUCTIONS

ANSWER ALL QUESTIONS FROM SECTION A

(TOTAL 40 MARKS) AND ANY TWO QUESTIONS FROM SECTION B (EACH QUESTION IS 30 MARKS

AND A TOTAL OF 60 MARKS)

NON-PROGRAMMABLE ELECTRONIC CALCULATORS MAY BE USED.

A PERIODIC TABLE AND OTHER USEFUL DATA HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER

PLEASE DO NOT OPEN THIS EXAMINATION PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

SECTION A

MULTIPLE CHOICE [50 MARKS]

Indicate the best option for each of the following multiple choice questions:

1.	The symbol for the eler	nent mercury is	
	(A) Me (B) Pb		(E) Ag
2.	A small amount of salt	dissolved in water is an exam	ple of a
	(A) homogeneous mix(D) pure substance	ture (B) heterogeneous (E) solid	(C) compound
3.	Muddy water is placed This process is called	on a porous surface and clear	ar water allowed to seep through.
	(A) centrifugation(D) distillation	(B) recrystallization(E) decantation	(C) filtration
4.		wing has the element name an	
	(A) S, sodium(D) N, neon	(B) Tn, tin (E) B, bromine	(C) Fe, iron
	(D) 14, neon	(L) D, blomme	
5.		wing is a pure substance?	(0)
	(A) concrete(D) elemental copper	(B) wood (E) milk	(C) salt water
	(D) cicincinal copper	(L) min	
6.	Which of the following	gare chemical processes?	
		of a nail.	
	•	g of water.	
		position of water into hydrogen	n and oxygen gases.
	-	ssion of oxygen gas.	(C) I, III
	(A) II, III, IV (D) I, II	(B) I, III, IV (E) I, IV	(C) 1, III
	(D) 1, 11	(L) 1, 1 v	
7.	Which atom has the sm	nallest number of neutrons?	
	(A) Chlorine-17	(B) nitrogen-1	4 (C) oxygen-16
	(D) fluorine-19	(E) neon-20	•
8.	There are	electrons, proto	ons, and neutrons in
	an atom of $^{132}_{54}$ Xe		•
	(A) 132, 132, 54	(B) 54, 54, 132	(C) 78, 78, 54
	(D) 54, 54, 78	(E) 78, 78, 132	
9.	Of the following, only	is not a metalloid	d.
	(A) B (B) Al	(C) Si (D) Ge	

10.	abundances of				The masses (amu The average atomi	
		Isotope	Abunda	ance (%)	Mass (amu)	
		^{31}X		.16	31.16	
		³⁴ X	1	.84	34.30	
	(A) 30.20	(B) 33.20	(C) 34.02	(D) 35.22	(E) 32.73	
11.	Which specie	s has 54 electro	ons?			
	(A) $^{132}_{54}Xe^+$	(B) $^{128}_{52}Te^{2-}$	(C) $^{118}_{50}Sn^{2+}$	(D) $^{112}_{48}Cd$	(E) $^{132}_{54}Xe^{2+}$	
12.		following com (B) H ₂ O	-	-		
13.	When the foll	lowing equation	n is balanced, t	he coefficients	are	
	NH ₃ (A) 1, 1, 1, 1	$+ O_2 \rightarrow NO_2$	+ H ₂ O (B) 4, 7, 4, 6	5	(C) 2, 3, 2, 3	
14.	There are(A) 25 (D) 100	hydro	ogen atoms in 3 (B) 3.8 x 10 (E) 1.5 x 10	24	f C ₄ H ₄ S ₂ . (C) 6.0×10^{25}	
15.	The formula		e is C ₆ H ₅ NO ₂ .	The molecula	r weight of this con (E) 3.06	npound is
16.	A sample of (A) 2.2 x 10^2 (D) 4.4 x 10^2	13	nass of 19 g cor (B) 38 (E) 9.5	ntains	atoms of F. (C) 3.3 x 10 ²⁴	·
17.	How many gr (A) 3.121 x 1 (D) 9.100 x 1	10^{-5}	carbonate, Na (B) 1.011 x (E) 6.066 x	10 ⁻⁵	$1.773 \times 10^{17} \text{ carbon}$ (C) 1.517×10^{-5}	atoms?
18.	The concentre	ation (M) of ar diluted to 0.800	n aqueous met	hanol producedM.	d when 0.200 L of	a 2.00 M
	(A) 0.800		(C) 0.500		(E) 8.00	
19.	All of the or quantum num (A) principal (E) B and C	ber.			e value of the	
20.	Which of the quantum num		ow do not exis	st due to the c	onstraints upon the	subshell
	(A) 4f	(B) 4d	(C) 3f	(D) 4s	(E) 4p	

21.		quantum numbers $n = 1$	
	(A) 6, 1, 0 (B) 3, 2, 3	(C) 3, 2, -2 (D) 1, 0, 0	(E) 3, 2, 1
22.		numbers (n, l, m_l) corresponds (C) 3, 2, 3 (D) 2, 1, 0	
23.	The ground state electron con (A) [He]2s ² 2p ² (D) [He]2s ² 2p ⁵	nfiguration of fluorine is (B) [He]2s ² 2p ³ (E) [He]2s ² 2p ⁶	(C) [He]2s ² 2p ⁴
24.	What is the electron configur (A) [Ar]4s ¹ 3d ⁶ (D) [Ar]4s ² 3d ⁹	ration for the Co ²⁺ ion? (B) [Ar]3d ⁷ (E) [Ne]3s ² 3p ¹⁰	(C) [Ar]3d ⁵
25.	Which of the following wou gas electron configuration? O Sr Na (A) Br (B) Sr	ld have to gain two electrons Se Br (C) Na (D) O, Se	•
26.	The Lewis structure of NH ₃ nonbonding (lone) and	shows that the central phosph bonding electron pairs (C) 3, 1 (D) 1, 2	orus atom has
27.	What is 0.00950 in standard (A) 950 (D) 9.5 x 10 ⁻³	(B) 0.950 x 10 ⁻² (E) 9.50 x 10 ⁻³	(C) 9.50×10^3
28.	In a triple covalent bond, how (A) 6 (B) 4	w many electrons are shared? (C) 2 (D) 8	(E) 10
29.		nuric acid from a lake near and 22 ml of 0.0120 M NaOH.	
	(A) 0.00398 M (D) 0.00298 M	(B) 0.0119 M (E) 0.00198 M	(C) 0.00238 M
30.	Which of the following corre (A) 10 g of glucose per 10 (B) 1.0 g of glucose per 11 (C) 0.1 g of glucose per 11 (D) 10 g of glucose per 10 (E) 10 g of glucose per 10	0 ml of solution. .0 ml of solution. 00 ml of solution.	ucose solution?
31.	Which of the following is not (A) Sodium chloride (D) Ethanol	-	mmonia
32.	What is the name of CH ₃ CH ₂ (A) pentane (D) hexane		vclopentane

33.	(A) CH ₃ CH ₂ OCH ₂ CH ₃ (D) CH ₃ COCH ₃	(B) CH ₃ CH ₂ OH (E) CH ₃ CHO	(C) CH ₃ NH ₂
34.	Which of the following st	ructures is a primary al	cohol?
	(A) CH ₃ OH	(B)	CH₃-CH-CH₃ OH
	(C) CH ₃ -O-CH ₂ -CH ₃	(D)	CH₃ CH₃-CH-CH₃ OH
	(E) CH₃CHO		
35.		onal units (B) Interna ite international (C)	tional system of units Standardised system of units
36.			a Fahrenheit thermometer. elvin thermometer were used? (C) 298 K
37.		ml, 30.4 g/ml and 40 g	f cadmium in waste water gave 33.5 g/ml. What is the percentage relative
	(A) 10 % (D) 3.5 %	(B) 34.8 % (E) 9.1 %	(C) 5 %
38.	If the true value for the c what is the percentage rel (A) 16.5 % (D) 85.8 %	ative error ? (B) 5.74 %	m in question 37 above is 40.5 g/ml, (C) 40.5 %
39.	` '	r analysis. Express the	
40.	such a person takes in cointake, expressed at the co	only 1.02 mg/day. Whorrect degree of precision	3 mg for a male adult. Suppose hat percentage of the recommended on, is he receiving?
	(D) 71.7 % (E)	72%	

SECTION B

ANSWER ANY TWO QUESTIONS

QUESTION 1 [30 MARKS]

- a) (i) Write short notes on any Three of the following pollutants. [12]
 Oxygen Demanding Wastes
 Eutrophication
 Inorganic Wastes
 Organic Pesticides
 - (ii) Using examples briefly describe the chemical process involved in each of the following water purification methods. [12]
 Ion exchange resins
 Chlorination
 Coagulation and sedimentation
 Sequestration
- b) Explain the difference between permanent and temporary water hardness. [6]

QUESTION 2 [30 MARKS]

- a) i) Define a buffer solution [4]
 - ii) Name three kinds of buffers found in the body. [9]
- b) Briefly discuss any one of the following: [8]
 - i) Respiratory acidosis
 - ii) Metabolic acidosis

In your discussion include the cause, the symptoms and the treatment.

c) A 19 year old man is admitted to hospital.. On admission his laboratory results were as follows:

Blood pressure	90/20 mm Hg	Sodium	132mmol/L
Deep respirations	35/min	Potassium	6.5mmol/L
Pulse	120/min	pН	6.75
glucose	20 mmol/l	PCO ₂	11 mm Hg
protein	100 μg/dl	Blood ketones	positive

- i) Using the data given diagnose the condition of the patient, giving specific reasons for your diagnoses. [6]
- ii) What treatment would you prescribe. [3]

QUESTION 3 [30 MARKS]

- a) Explain the difference between the following pairs of terms. Give examples for each pairs.
 - i) Ionic bonding and Covalent bond

[6]

- ii) Hunds rule and Pauli Exclusion Principle
- b) Based on the electronic configurations of the elements, explain why each of the following is true [5]:
 - (i) ionisation of neon is greater than that of Fluorine
 - (ii) atomic radius of sulfur is less than that of sodium
 - (iii)ionisation of oxygen is less than that of nitrogen
 - (iv)electron affinity of carbon is greater than that of nitrogen
 - (v) Electronegativety of bromine is greater than that of potassium
- c) Draw Lewis structures or diagrams to show and name the type of bonding for each of the following: [4]
 - (i) calcium chloride
 - (ii) NH_{\perp}^{+}
 - (iii) H₂O
- c). i) Using Hunds rule, Aufbau building up principle and the periodic table write the electronic configurations of the following elements. [5]

 Arsenic Berylium Lead Cadmium Mercury
 - ii) Identify and name environmental hazards of the elements in 3c(i) from the pictures below and indicate the most likely sources. [4]

QUESTION 4 [30 MARKS]

- (a) Using diagrams explain why water dissolves NaCl to form an electrolyte solution [5].
- (b) A chemist wants to produce urea (N_2CH_4O) by reacting ammonia (NH_3) and carbon dioxide (CO_2) . The balanced equation for the reaction is $2NH_3(g) + CO_2(g) \rightarrow N_2CH_4O(s) + H_2O(l)$

The chemist reacts 5.11 g NH₃ with excess CO₂ and isolates 3.12 g of solid N_2CH_4O . Calculate the percentage yield of the experiment. [5]

(c) Stomach acid is essentially 0.10 M HCl. An active ingredient found in a number of popular antacids is calcium carbonate, CaCO₃ which reacts with HCl according to the balanced equation below.

 $CaCO_3(s) + 2HCl(aq) \rightarrow CO_2(g) + CaCl_2(aq) + H_2O(l)$ Calculate the number of grams of $CaCO_3$ needed to exactly react with 250 ml of stomach acid. [5]

(d) A certain alcohol contains only three elements, carbon, C, hydrogen, H, and oxygen,
 O. Combustion of a 50.00 gram sample of the alcohol produced 95.50 grams of CO₂ and 58.70 grams of H₂O. What is the empirical formula of the alcohol? [6]

NORMAL LABORATORY VALUES FOR BLOOD TESTS

	USUAL REFER	ENCE RANGE
Specific Gravity	·	1.056
Hemoglobin Count Hb		Men: 14 - 18g /dL
		Women: 12 -16 g/dL
HCO ₃ Bicarbonate	24 - 28 mmol/L	24 - 28 mEq/L
Glucose	(3.6-6.1 mmol/L)	65 - 110 mg/dL
BUN (Blood Urea Nitrogen)	2.9 - 7.1 mmol/L	8 - 20 mg/dL
Ca ⁺²	(2.1-2.6 mmol/L)	8.5 - 10.3 mg/dL
Cl ⁻	(96-106 mmol/L)	96 - 106 mEq/L
Cholesterol		150 - 220 mg/dL
CO ₂	24-29 mmol/L	24-29 mEq/L
PCO ₂		35-45 mmHg
PO ₂		80 - 100 mm Hg
pН		7.35 - 7.45
Fatty acids	0.3-0.8 mmol/L	0.3-2 mg/dL
Protein		6-8 μg/dL
Phosphate	1 - 1.5 mmol/L	3-4.5 mg/dL
ketone bodies		0.3-2 mg/dL
Κ+	3.5-5 mmol/L	3.5 - 5 mEq/L
Na ⁺	136-145 mmol/L	136 - 145 mEq/L
Uric Acid	Men: 0.18 - 0.54	Men: 3 - 9 mg/dL
	Women: 0.15 - 0.46 mmol/L	Women: 2.5 - 7.5 mg/dL
		Children: 1.5 g/L
		(150mg/dL)

Group	_	2	3	4	5	9	7	∞	6	10		12	13	14	15	91	17	18
	ΙΑ	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
Period	1							7		• •							<u> </u>	2:
→	H							Z	NON-MEIALS	IALS				_				He
-	1.008												,				·	4:003
	3	4											5	9.4	L	8	6	10 \$
6	Ŀ	Be							METALLOIDS	TOIDS	\		m	Ö	Z	0	F	Se
	6.94	9.01			-								10.81	12.01	14.01	16.00	19.00	20.18
	11	12				2	METALS						13	14	<u>.</u> [2]	. 91	17	18**
ю	Na	Mg				: ↑							V	Si	A	W	D	Ar
	22.99	24.31											26.9	28.09	30.97	32.06	35.45	39,95
-	61	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	¥	Ca	i	Ti	>	Ç	Mn	Fe	ပိ	Z	Ca	Zn	Ga	Ge	As	Se	Br	Ž
<i>(</i> .	39.10	40.08	Sc	47.90	50.94	52.01	54.9	58.85	58.71	58.71	63.54	65.37	69.7	72.59	74.92	78.96	79.91	83.80
			44.96															
	37	38	39	40	· 41	42	43	44	45	46	47	48	49	50		52	53	54 🕵
5	R _b	Sr	>	\mathbf{Zr}	QN.	Mo	Tc	Ru	Rh	Pd	Ag	Cq	In	Sn	$\mathbf{S}\mathbf{p}$	Te	H	Xe
-	85.47	87.62	88.91	91.22	91.22	95.94	98.9	101.1	102.9	106.4	107.9	112.4	114.8	118.7		127.6	126.9	13189
	55	-95	7.1	7.5	73	74	22	9/	77	78	79	80	81	82		84	85	86
9 .	Š	Ba	Lu	Ηŧ	Ta	*	Re	Os	Ţ	Pt	Αn	Hg	E	Pb	Bi	Po	At	E
	132.9	137.3	174.9	178.5	180.9	183.8	186.2	190.2	192.2,	195.1	196.9	200.6	204.4	207.2	208.9	210	210	222章
	87	88	103	104	105	106	107	108	109									
	Fr	Ra	Lr	Und	Unp	Unh	Uns	Uno	Une									
\$- 	223	226.0	257															

	57	58	65	09	61	62	63	64	65	99	<i>L</i> 9	89	69	70
Lanthanides	La	Ce	Pr	Na	Pm	Sm	Eu	P Cq	$\mathbf{T}\mathbf{p}$	Dy	Ho	Er	Tm	Yb
-	138.9	140.1	140.9	144.2	146.9	150.9	151.3	157.3	158.9	162.5	164.9	167.3	168.9	173.0
	68	06	91	92	93	94	95	96	26	86	66	100	101	102
Actinides	Ac	Th	Pa	n	Np	Pu	Am	Cm	Bk	Ct	Es	Fm	Md	N _o
	227.0	232.0	231.0	238.0	$23\bar{7.1}$	239.1	241.1	247.1	249.1	251.1	254.1	257.1	258.1	255

Numbers below the symbol indicates the atomic masses; and the numbers above the symbol indicates the atomic numbers.

Useful Relations	ikidablerofrankoloniana			General Data		
				*		
$(RT)_{298\cdot15K}=2.4789 \text{ kJ/mol}$	kJ/mol			speed of light	J.	2.997 925x10 ⁸ ms ⁻¹
(RT/F) _{298-15K} =0.025 693 V	693 V			charge of proton	в	1.602 19x10 ⁻¹⁹ C
T/K: 100.15 298.15		500.15 1000.15		Faraday constant	F=Le	9.648 46x10 ⁴ C mol ⁻¹
T/Cm ⁻¹ : 69.61	207.22 34	347.62 695.13		Boltzmann constant	¥	1.380 66x10 ⁻²³ J K ⁻¹
1mmHg=133.222 N m ⁻²	√ m ⁻²	**************************************		Gas constant	R=Lk	8.314 41 J K ⁻¹ mol ⁻¹
hc/k=1.438 78x10 ⁻² m K	mK				And the same of th	$8.205 75 \text{x} 10^{-2} \text{ dm}^3 \text{ atm K}^{-1} \text{ mol}^{-1}$
latm	1 cal	1 eV	1cm ⁻¹			
=1.01325x10 ⁵ Nm ⁻²	-4.184 J	=1.602 189x10 ⁻¹⁹ J	=0.124x10 ⁻³ eV	Planck constant	h	6.626 18x10 ⁻³⁴ Js
=760torr =1 ber	-	=96.485 kJ/mol = 8065.5 cm ⁻¹	$=1.9864 \times 10^{-23}$		$\hbar = \frac{h}{2\pi}$	1.054 59x10 ⁻³⁴ Js
				Avogadro constant	L or N _{av}	6.022 14x10 ²³ mol ⁻¹
SI-units:				Atomis mass unit	n	1.660 54x10 ⁻²⁷ kg
$IL = 1000 ml = 1000 cm^3 = 1 dm^3$	$00cm^3 = I c$	lm^3		Electron mass	me	9.109 39x10 ⁻³¹ kg
1 dm = 0.1 m				Proton mass	m _p	$1.672 62 \text{x} 10^{-27} \text{ kg}$
1 cal (thermochemical) = 4.184 J	cal) = 4.184	Ţ		Neutron mass	m _n	1.674 93x10 ⁻²⁷ kg
dipole moment: 1 Debye = $3.335 64 \times 10^{-30} \text{ C m}$	Oebye = 3.3	35 64x10 ⁻³⁰ C m		Vacuum permittivity	$\varepsilon_{\rm o}=\mu_{\rm o}^{-1}{ m c}^{-2}$	$8.854 188 \times 10^{-12} \mathrm{J}^{-1} \mathrm{C}^{2} \mathrm{m}^{-1}$
force: $IN=IJ m^{-1}$	$Ikgms^{-2}=10$	force: $IN=IJ m^{-l} = Ikgms^{-2} = 10^5$ dyne pressure: $IPa=INm^{-2} = 1Jm^{-3}$	$a = INm^{-2} = 1 \text{Jm}^{-3}$	Vacuum permeability	h,	$4\pi x 10^{-7} \text{ Js}^2 \text{C}^{-2} \text{ m}^{-1}$
$IJ = I Nm$ power: $1W = 1J s^{-1}$		potential: 1V=1	$V = 1 J C^{-1}$	Bohr magneton	$\mu_{B} = e\hbar/2m_{e}$	$9.274~02\mathrm{x}10^{-24}~\mathrm{JT}^{-1}$
magnetic flux: 1T=1Vsm ⁻² =1JCsm ⁻²	1Vsm ⁻² =1JC	current:	1A=1Cs ⁻¹	Nuclear magneton	$\mu_{N} = \frac{e\hbar}{2m_{p}}$	5.05079x10 ⁻²⁷ JT ⁻¹
<u>Prefixes:</u>		projectivity when the principal content for a construction of the	de et de la companya	12 Gravitational constant	D	6.67259x10 ⁻¹¹ Nm ² kg ⁻²
m u d	ш	c d k	M G	Gravitational	50	9.80665 ms ⁻²
nano	o milli	deci	ga	acceleration		
10 ⁻¹² 10 ⁻³ 10 ⁻⁶	10-3	$10^{-2} 10^{-1} 10^{3}$	10° 10°	Bohr radius	40	5.291 77x10 ⁻¹¹ m

.