UNIVERSITY OF SWAZILAND ## FINAL EXAMINATION 2014/2015 TITLE OF PAPER: CHEMISTRY FOR HEALTH AND ENVIRONMENTAL SCIENCES COURSE CODE HSC106 TIME THREE (3) HOURS TOTAL MARKS 100 MARKS EXAMINER DR. J. M. THWALA INSTRUCTIONS ANSWER ALL QUESTIONS FROM SECTION A (TOTAL 40 MARKS) AND ANY TWO QUESTIONS FROM SECTION B (EACH QUESTION IS 30 MARKS AND A TOTAL OF 60 MARKS) NON-PROGRAMMABLE ELECTRONIC CALCULATORS MAY BE USED. A PERIODIC TABLE AND OTHER USEFUL DATA HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER PLEASE DO NOT OPEN THIS EXAMINATION PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR. # SECTION A # MULTIPLE CHOICE [50 MARKS] Indicate the best option for each of the following multiple choice questions: | 1. | The symbol for the eler | nent mercury is | | |----|--|---|-----------------------------------| | | (A) Me (B) Pb | | (E) Ag | | 2. | A small amount of salt | dissolved in water is an exam | ple of a | | | (A) homogeneous mix(D) pure substance | ture (B) heterogeneous (E) solid | (C) compound | | 3. | Muddy water is placed
This process is called | on a porous surface and clear | ar water allowed to seep through. | | | (A) centrifugation(D) distillation | (B) recrystallization(E) decantation | (C) filtration | | 4. | | wing has the element name an | | | | (A) S, sodium(D) N, neon | (B) Tn, tin (E) B, bromine | (C) Fe, iron | | | (D) 14, neon | (L) D, blomme | | | 5. | | wing is a pure substance? | (0) | | | (A) concrete(D) elemental copper | (B) wood
(E) milk | (C) salt water | | | (D) cicincinal copper | (L) min | | | 6. | Which of the following | gare chemical processes? | | | | | of a nail. | | | | • | g of water. | | | | | position of water into hydrogen | n and oxygen gases. | | | - | ssion of oxygen gas. | (C) I, III | | | (A) II, III, IV
(D) I, II | (B) I, III, IV
(E) I, IV | (C) 1, III | | | (D) 1, 11 | (L) 1, 1 v | | | 7. | Which atom has the sm | nallest number of neutrons? | | | | (A) Chlorine-17 | (B) nitrogen-1 | 4 (C) oxygen-16 | | | (D) fluorine-19 | (E) neon-20 | • | | 8. | There are | electrons, proto | ons, and neutrons in | | | an atom of $^{132}_{54}$ Xe | | • | | | (A) 132, 132, 54 | (B) 54, 54, 132 | (C) 78, 78, 54 | | | (D) 54, 54, 78 | (E) 78, 78, 132 | | | 9. | Of the following, only | is not a metalloid | d. | | | (A) B (B) Al | (C) Si (D) Ge | | | 10. | abundances of | | | | The masses (amu
The average atomi | | |-----|--|-------------------------------------|--|---------------------|--|-----------| | | | Isotope | Abunda | ance (%) | Mass (amu) | | | | | ^{31}X | | .16 | 31.16 | | | | | ³⁴ X | 1 | .84 | 34.30 | | | | (A) 30.20 | (B) 33.20 | (C) 34.02 | (D) 35.22 | (E) 32.73 | | | 11. | Which specie | s has 54 electro | ons? | | | | | | (A) $^{132}_{54}Xe^+$ | (B) $^{128}_{52}Te^{2-}$ | (C) $^{118}_{50}Sn^{2+}$ | (D) $^{112}_{48}Cd$ | (E) $^{132}_{54}Xe^{2+}$ | | | 12. | | following com (B) H ₂ O | - | - | | | | 13. | When the foll | lowing equation | n is balanced, t | he coefficients | are | | | | NH ₃ (A) 1, 1, 1, 1 | $+ O_2 \rightarrow NO_2$ | + H ₂ O
(B) 4, 7, 4, 6 | 5 | (C) 2, 3, 2, 3 | | | 14. | There are(A) 25 (D) 100 | hydro | ogen atoms in 3
(B) 3.8 x 10
(E) 1.5 x 10 | 24 | f C ₄ H ₄ S ₂ .
(C) 6.0×10^{25} | | | 15. | The formula | | e is C ₆ H ₅ NO ₂ . | The molecula | r weight of this con (E) 3.06 | npound is | | 16. | A sample of (A) 2.2 x 10^2 (D) 4.4 x 10^2 | 13 | nass of 19 g cor
(B) 38
(E) 9.5 | ntains | atoms of F.
(C) 3.3 x 10 ²⁴ | · | | 17. | How many gr
(A) 3.121 x 1
(D) 9.100 x 1 | 10^{-5} | carbonate, Na
(B) 1.011 x
(E) 6.066 x | 10 ⁻⁵ | $1.773 \times 10^{17} \text{ carbon}$
(C) 1.517×10^{-5} | atoms? | | 18. | The concentre | ation (M) of ar
diluted to 0.800 | n aqueous met | hanol producedM. | d when 0.200 L of | a 2.00 M | | | (A) 0.800 | | (C) 0.500 | | (E) 8.00 | | | 19. | All of the or
quantum num
(A) principal
(E) B and C | ber. | | | e value of the | | | 20. | Which of the quantum num | | ow do not exis | st due to the c | onstraints upon the | subshell | | | (A) 4f | (B) 4d | (C) 3f | (D) 4s | (E) 4p | | | 21. | | quantum numbers $n = 1$ | | |-----|---|--|---| | | (A) 6, 1, 0 (B) 3, 2, 3 | (C) 3, 2, -2 (D) 1, 0, 0 | (E) 3, 2, 1 | | 22. | | numbers (n, l, m_l) corresponds (C) 3, 2, 3 (D) 2, 1, 0 | | | 23. | The ground state electron con
(A) [He]2s ² 2p ²
(D) [He]2s ² 2p ⁵ | nfiguration of fluorine is
(B) [He]2s ² 2p ³
(E) [He]2s ² 2p ⁶ | (C) [He]2s ² 2p ⁴ | | 24. | What is the electron configur
(A) [Ar]4s ¹ 3d ⁶
(D) [Ar]4s ² 3d ⁹ | ration for the Co ²⁺ ion? (B) [Ar]3d ⁷ (E) [Ne]3s ² 3p ¹⁰ | (C) [Ar]3d ⁵ | | 25. | Which of the following wou gas electron configuration? O Sr Na (A) Br (B) Sr | ld have to gain two electrons Se Br (C) Na (D) O, Se | • | | 26. | The Lewis structure of NH ₃ nonbonding (lone) and | shows that the central phosph bonding electron pairs (C) 3, 1 (D) 1, 2 | orus atom has | | 27. | What is 0.00950 in standard (A) 950
(D) 9.5 x 10 ⁻³ | (B) 0.950 x 10 ⁻²
(E) 9.50 x 10 ⁻³ | (C) 9.50×10^3 | | 28. | In a triple covalent bond, how (A) 6 (B) 4 | w many electrons are shared? (C) 2 (D) 8 | (E) 10 | | 29. | | nuric acid from a lake near and 22 ml of 0.0120 M NaOH. | | | | (A) 0.00398 M
(D) 0.00298 M | (B) 0.0119 M
(E) 0.00198 M | (C) 0.00238 M | | 30. | Which of the following corre (A) 10 g of glucose per 10 (B) 1.0 g of glucose per 11 (C) 0.1 g of glucose per 11 (D) 10 g of glucose per 10 (E) 10 g of glucose per 10 | 0 ml of solution.
.0 ml of solution.
00 ml of solution. | ucose solution? | | 31. | Which of the following is not
(A) Sodium chloride
(D) Ethanol | - | mmonia | | 32. | What is the name of CH ₃ CH ₂ (A) pentane (D) hexane | | vclopentane | | | | | | | 33. | (A) CH ₃ CH ₂ OCH ₂ CH ₃
(D) CH ₃ COCH ₃ | (B) CH ₃ CH ₂ OH
(E) CH ₃ CHO | (C) CH ₃ NH ₂ | |-----|---|---|---| | 34. | Which of the following st | ructures is a primary al | cohol? | | | (A) CH ₃ OH | (B) | CH₃-CH-CH₃

OH | | | (C) CH ₃ -O-CH ₂ -CH ₃ | (D) | CH₃

CH₃-CH-CH₃

OH | | | (E) CH₃CHO | | | | 35. | | onal units (B) Interna ite international (C) | tional system of units
Standardised system of units | | 36. | | | a Fahrenheit thermometer.
elvin thermometer were used?
(C) 298 K | | 37. | | ml, 30.4 g/ml and 40 g | f cadmium in waste water gave 33.5 g/ml. What is the percentage relative | | | (A) 10 %
(D) 3.5 % | (B) 34.8 %
(E) 9.1 % | (C) 5 % | | 38. | If the true value for the c what is the percentage rel (A) 16.5 % (D) 85.8 % | ative error ? (B) 5.74 % | m in question 37 above is 40.5 g/ml, (C) 40.5 % | | 39. | ` ' | r analysis. Express the | | | 40. | such a person takes in cointake, expressed at the co | only 1.02 mg/day. Whorrect degree of precision | 3 mg for a male adult. Suppose hat percentage of the recommended on, is he receiving? | | | (D) 71.7 % (E) | 72% | | | | | | | #### **SECTION B** #### **ANSWER ANY TWO QUESTIONS** #### **QUESTION 1 [30 MARKS]** - a) (i) Write short notes on any Three of the following pollutants. [12] Oxygen Demanding Wastes Eutrophication Inorganic Wastes Organic Pesticides - (ii) Using examples briefly describe the chemical process involved in each of the following water purification methods. [12] Ion exchange resins Chlorination Coagulation and sedimentation Sequestration - b) Explain the difference between permanent and temporary water hardness. [6] ## **QUESTION 2 [30 MARKS]** - a) i) Define a buffer solution [4] - ii) Name three kinds of buffers found in the body. [9] - b) Briefly discuss any one of the following: [8] - i) Respiratory acidosis - ii) Metabolic acidosis In your discussion include the cause, the symptoms and the treatment. c) A 19 year old man is admitted to hospital.. On admission his laboratory results were as follows: | Blood pressure | 90/20 mm Hg | Sodium | 132mmol/L | |-------------------|-------------|------------------|-----------| | Deep respirations | 35/min | Potassium | 6.5mmol/L | | Pulse | 120/min | pН | 6.75 | | glucose | 20 mmol/l | PCO ₂ | 11 mm Hg | | protein | 100 μg/dl | Blood ketones | positive | - i) Using the data given diagnose the condition of the patient, giving specific reasons for your diagnoses. [6] - ii) What treatment would you prescribe. [3] #### **QUESTION 3 [30 MARKS]** - a) Explain the difference between the following pairs of terms. Give examples for each pairs. - i) Ionic bonding and Covalent bond [6] - ii) Hunds rule and Pauli Exclusion Principle - b) Based on the electronic configurations of the elements, explain why each of the following is true [5]: - (i) ionisation of neon is greater than that of Fluorine - (ii) atomic radius of sulfur is less than that of sodium - (iii)ionisation of oxygen is less than that of nitrogen - (iv)electron affinity of carbon is greater than that of nitrogen - (v) Electronegativety of bromine is greater than that of potassium - c) Draw Lewis structures or diagrams to show and name the type of bonding for each of the following: [4] - (i) calcium chloride - (ii) NH_{\perp}^{+} - (iii) H₂O - c). i) Using Hunds rule, Aufbau building up principle and the periodic table write the electronic configurations of the following elements. [5] Arsenic Berylium Lead Cadmium Mercury - ii) Identify and name environmental hazards of the elements in 3c(i) from the pictures below and indicate the most likely sources. [4] #### **QUESTION 4 [30 MARKS]** - (a) Using diagrams explain why water dissolves NaCl to form an electrolyte solution [5]. - (b) A chemist wants to produce urea (N_2CH_4O) by reacting ammonia (NH_3) and carbon dioxide (CO_2) . The balanced equation for the reaction is $2NH_3(g) + CO_2(g) \rightarrow N_2CH_4O(s) + H_2O(l)$ The chemist reacts 5.11 g NH₃ with excess CO₂ and isolates 3.12 g of solid N_2CH_4O . Calculate the percentage yield of the experiment. [5] (c) Stomach acid is essentially 0.10 M HCl. An active ingredient found in a number of popular antacids is calcium carbonate, CaCO₃ which reacts with HCl according to the balanced equation below. $CaCO_3(s) + 2HCl(aq) \rightarrow CO_2(g) + CaCl_2(aq) + H_2O(l)$ Calculate the number of grams of $CaCO_3$ needed to exactly react with 250 ml of stomach acid. [5] (d) A certain alcohol contains only three elements, carbon, C, hydrogen, H, and oxygen, O. Combustion of a 50.00 gram sample of the alcohol produced 95.50 grams of CO₂ and 58.70 grams of H₂O. What is the empirical formula of the alcohol? [6] # NORMAL LABORATORY VALUES FOR BLOOD TESTS | | USUAL REFER | ENCE RANGE | |------------------------------|---------------------------|------------------------| | Specific Gravity | · | 1.056 | | Hemoglobin Count Hb | | Men: 14 - 18g /dL | | | | Women: 12 -16 g/dL | | HCO ₃ Bicarbonate | 24 - 28 mmol/L | 24 - 28 mEq/L | | Glucose | (3.6-6.1 mmol/L) | 65 - 110 mg/dL | | BUN (Blood Urea Nitrogen) | 2.9 - 7.1 mmol/L | 8 - 20 mg/dL | | Ca ⁺² | (2.1-2.6 mmol/L) | 8.5 - 10.3 mg/dL | | Cl ⁻ | (96-106 mmol/L) | 96 - 106 mEq/L | | Cholesterol | | 150 - 220 mg/dL | | CO ₂ | 24-29 mmol/L | 24-29 mEq/L | | PCO ₂ | | 35-45 mmHg | | PO ₂ | | 80 - 100 mm Hg | | pН | | 7.35 - 7.45 | | Fatty acids | 0.3-0.8 mmol/L | 0.3-2 mg/dL | | Protein | | 6-8 μg/dL | | Phosphate | 1 - 1.5 mmol/L | 3-4.5 mg/dL | | ketone bodies | | 0.3-2 mg/dL | | Κ+ | 3.5-5 mmol/L | 3.5 - 5 mEq/L | | Na ⁺ | 136-145 mmol/L | 136 - 145 mEq/L | | Uric Acid | Men: 0.18 - 0.54 | Men: 3 - 9 mg/dL | | | Women: 0.15 - 0.46 mmol/L | Women: 2.5 - 7.5 mg/dL | | | | Children: 1.5 g/L | | | | (150mg/dL) | | Group | _ | 2 | 3 | 4 | 5 | 9 | 7 | ∞ | 6 | 10 | | 12 | 13 | 14 | 15 | 91 | 17 | 18 | |------------|----------------|-------|-------|---------------|-------|---------------|--------|-------|------------|--------|----------|-------|----------|-------|------------------------|-------|----------|-------| | | ΙΑ | IIA | IIIB | IVB | VB | VIB | VIIB | | VIIIB | | IB | IIB | IIIA | IVA | VA | VIA | VIIA | VIIIA | | Period | 1 | | | | | | | 7 | | •
• | | | | | | | <u> </u> | 2: | | → | H | | | | | | | Z | NON-MEIALS | IALS | | | | _ | | | | He | | - | 1.008 | | | | | | | | | | | | , | | | | · | 4:003 | | | 3 | 4 | | | | | | | | | | | 5 | 9.4 | L | 8 | 6 | 10 \$ | | 6 | Ŀ | Be | | | | | | | METALLOIDS | TOIDS | \ | | m | Ö | Z | 0 | F | Se | | | 6.94 | 9.01 | | | - | | | | | | | | 10.81 | 12.01 | 14.01 | 16.00 | 19.00 | 20.18 | | | 11 | 12 | | | | 2 | METALS | | | | | | 13 | 14 | <u>.</u> [2] | . 91 | 17 | 18** | | ю | Na | Mg | | | | :
↑ | | | | | | | V | Si | A | W | D | Ar | | | 22.99 | 24.31 | | | | | | | | | | | 26.9 | 28.09 | 30.97 | 32.06 | 35.45 | 39,95 | | - | 61 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | | 4 | ¥ | Ca | i | Ti | > | Ç | Mn | Fe | ပိ | Z | Ca | Zn | Ga | Ge | As | Se | Br | Ž | | <i>(</i> . | 39.10 | 40.08 | Sc | 47.90 | 50.94 | 52.01 | 54.9 | 58.85 | 58.71 | 58.71 | 63.54 | 65.37 | 69.7 | 72.59 | 74.92 | 78.96 | 79.91 | 83.80 | | | | | 44.96 | | | | | | | | | | | | | | | | | | 37 | 38 | 39 | 40 | · 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | | 52 | 53 | 54 🕵 | | 5 | R _b | Sr | > | \mathbf{Zr} | QN. | Mo | Tc | Ru | Rh | Pd | Ag | Cq | In | Sn | $\mathbf{S}\mathbf{p}$ | Te | H | Xe | | - | 85.47 | 87.62 | 88.91 | 91.22 | 91.22 | 95.94 | 98.9 | 101.1 | 102.9 | 106.4 | 107.9 | 112.4 | 114.8 | 118.7 | | 127.6 | 126.9 | 13189 | | | 55 | -95 | 7.1 | 7.5 | 73 | 74 | 22 | 9/ | 77 | 78 | 79 | 80 | 81 | 82 | | 84 | 85 | 86 | | 9 . | Š | Ba | Lu | Ηŧ | Ta | * | Re | Os | Ţ | Pt | Αn | Hg | E | Pb | Bi | Po | At | E | | | 132.9 | 137.3 | 174.9 | 178.5 | 180.9 | 183.8 | 186.2 | 190.2 | 192.2, | 195.1 | 196.9 | 200.6 | 204.4 | 207.2 | 208.9 | 210 | 210 | 222章 | | | 87 | 88 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | | | | | | | | | | | | Fr | Ra | Lr | Und | Unp | Unh | Uns | Uno | Une | | | | | | | | | | | \$-
 | 223 | 226.0 | 257 | 57 | 58 | 65 | 09 | 61 | 62 | 63 | 64 | 65 | 99 | <i>L</i> 9 | 89 | 69 | 70 | |-------------|-------|-------|-------|-------|---------------|-------|-------|---------|------------------------|-------|------------|-------|-------|----------------| | Lanthanides | La | Ce | Pr | Na | Pm | Sm | Eu | P
Cq | $\mathbf{T}\mathbf{p}$ | Dy | Ho | Er | Tm | Yb | | - | 138.9 | 140.1 | 140.9 | 144.2 | 146.9 | 150.9 | 151.3 | 157.3 | 158.9 | 162.5 | 164.9 | 167.3 | 168.9 | 173.0 | | | 68 | 06 | 91 | 92 | 93 | 94 | 95 | 96 | 26 | 86 | 66 | 100 | 101 | 102 | | Actinides | Ac | Th | Pa | n | Np | Pu | Am | Cm | Bk | Ct | Es | Fm | Md | N _o | | | 227.0 | 232.0 | 231.0 | 238.0 | $23\bar{7.1}$ | 239.1 | 241.1 | 247.1 | 249.1 | 251.1 | 254.1 | 257.1 | 258.1 | 255 | Numbers below the symbol indicates the atomic masses; and the numbers above the symbol indicates the atomic numbers. | Useful Relations | ikidablerofrankoloniana | | | General Data | | | |---|-------------------------|---|--|---------------------------|--|---| | | | | | * | | | | $(RT)_{298\cdot15K}=2.4789 \text{ kJ/mol}$ | kJ/mol | | | speed of light | J. | 2.997 925x10 ⁸ ms ⁻¹ | | (RT/F) _{298-15K} =0.025 693 V | 693 V | | | charge of proton | в | 1.602 19x10 ⁻¹⁹ C | | T/K: 100.15 298.15 | | 500.15 1000.15 | | Faraday constant | F=Le | 9.648 46x10 ⁴ C mol ⁻¹ | | T/Cm ⁻¹ : 69.61 | 207.22 34 | 347.62 695.13 | | Boltzmann constant | ¥ | 1.380 66x10 ⁻²³ J K ⁻¹ | | 1mmHg=133.222 N m ⁻² | √ m ⁻² | ************************************** | | Gas constant | R=Lk | 8.314 41 J K ⁻¹ mol ⁻¹ | | hc/k=1.438 78x10 ⁻² m K | mK | | | | And the same of th | $8.205 75 \text{x} 10^{-2} \text{ dm}^3 \text{ atm K}^{-1} \text{ mol}^{-1}$ | | latm | 1 cal | 1 eV | 1cm ⁻¹ | | | | | =1.01325x10 ⁵ Nm ⁻² | -4.184 J | =1.602 189x10 ⁻¹⁹ J | =0.124x10 ⁻³ eV | Planck constant | h | 6.626 18x10 ⁻³⁴ Js | | =760torr
=1 ber | - | =96.485 kJ/mol
= 8065.5 cm ⁻¹ | $=1.9864 \times 10^{-23}$ | | $\hbar = \frac{h}{2\pi}$ | 1.054 59x10 ⁻³⁴ Js | | | | | | Avogadro constant | L or N _{av} | 6.022 14x10 ²³ mol ⁻¹ | | SI-units: | | | | Atomis mass unit | n | 1.660 54x10 ⁻²⁷ kg | | $IL = 1000 ml = 1000 cm^3 = 1 dm^3$ | $00cm^3 = I c$ | lm^3 | | Electron mass | me | 9.109 39x10 ⁻³¹ kg | | 1 dm = 0.1 m | | | | Proton mass | m _p | $1.672 62 \text{x} 10^{-27} \text{ kg}$ | | 1 cal (thermochemical) = 4.184 J | cal) = 4.184 | Ţ | | Neutron mass | m _n | 1.674 93x10 ⁻²⁷ kg | | dipole moment: 1 Debye = $3.335 64 \times 10^{-30} \text{ C m}$ | Oebye = 3.3 | 35 64x10 ⁻³⁰ C m | | Vacuum permittivity | $\varepsilon_{\rm o}=\mu_{\rm o}^{-1}{ m c}^{-2}$ | $8.854 188 \times 10^{-12} \mathrm{J}^{-1} \mathrm{C}^{2} \mathrm{m}^{-1}$ | | force: $IN=IJ m^{-1}$ | $Ikgms^{-2}=10$ | force: $IN=IJ m^{-l} = Ikgms^{-2} = 10^5$ dyne pressure: $IPa=INm^{-2} = 1Jm^{-3}$ | $a = INm^{-2} = 1 \text{Jm}^{-3}$ | Vacuum permeability | h, | $4\pi x 10^{-7} \text{ Js}^2 \text{C}^{-2} \text{ m}^{-1}$ | | $IJ = I Nm$ power: $1W = 1J s^{-1}$ | | potential: 1V=1 | $V = 1 J C^{-1}$ | Bohr magneton | $\mu_{B} = e\hbar/2m_{e}$ | $9.274~02\mathrm{x}10^{-24}~\mathrm{JT}^{-1}$ | | magnetic flux: 1T=1Vsm ⁻² =1JCsm ⁻² | 1Vsm ⁻² =1JC | current: | 1A=1Cs ⁻¹ | Nuclear magneton | $\mu_{N} = \frac{e\hbar}{2m_{p}}$ | 5.05079x10 ⁻²⁷ JT ⁻¹ | | <u>Prefixes:</u> | | projectivity when the principal content for a construction of the | de et de la companya | 12 Gravitational constant | D | 6.67259x10 ⁻¹¹ Nm ² kg ⁻² | | m u d | ш | c d k | M G | Gravitational | 50 | 9.80665 ms ⁻² | | nano | o milli | deci | ga | acceleration | | | | 10 ⁻¹² 10 ⁻³ 10 ⁻⁶ | 10-3 | $10^{-2} 10^{-1} 10^{3}$ | 10° 10° | Bohr radius | 40 | 5.291 77x10 ⁻¹¹ m | | | | | | | | | .