UNIVERSITY OF SWAZILAND FACULTY OF HEALTH SCIENCES SUPPLEMENTARY EXAMINATION 2014/2015

TITLE OF PAPER

Instrumental Methods For

Environmental Analysis - 2

COURSE NUMBEER:

EHS 574

TIME ALLOWED

Two(2) Hours

INSTRUCTIONS

Answer any four (4) questions. Each

Question carries 25 marks.

A periodic table and other useful data have been provided with this paper.

•

REQUIREMENT:

GRAPH PAPER

You are not supposed to open this paper until permission to do so has been granted by the Chief Invigilator.

Question 1(25 marks)

- (a) What is an internal standard? [1]
- (b) Describe the graphical method of the standard addition method in AAS/FES during quantitative elemental analysis. Give one unique advantage of this method. [7]
- (c) Why is an internal standard most appropriate for quantitative analysis when unavoidable losses of analytes are expected during sample preparation?

 [2]
- (c) Aliquots of the standard solution of an element X were mixed with an unknown sample containing X for AAS analysis. The standard solution contained 1.00mg of X per liter. The following absorbance readings were obtained:

Vol. of Unknown (mL)	Vol. of standard (mL)	Total Volume (mL)	Absorbance
10.00	0	100.00	0.163
10.00	1.00	100.00	0.240
10.00	2.00	100.00	0.319
10.00	3.00	100.00	0.402
10.00	4.00	100.00	0.478

(i) Calculate the concentration (in mg/L) of added standard to each solution. [5]
 (ii) Using graphical method, determine the concentration of X in the unknown. [10]

Question 2(25 marks)

- a) What is solvent extraction?
- b) Define K (the distribution coefficient) and D (the distribution ratio). State any difference/s between them. [4]
- c) Briefly describe the procedure for the extraction of a solute contained in a 50.0mL aqueous phase using 100.0mL carbon tetrachloride [7]
- d) Using an appropriate expression, identify the factors that influence the distribution ratio (D) of an acid that is monomeric in both aqueous and organic phases and whose anion does not penetrate the organic layer. [4]

,

- e) i) Ninety percent of a certain solute is extracted when equal volumes of aqueous and organic phases are used. What will be the percent extracted if the volume of the organic phase is doubled? [6]
 - ii) If, instead of doubling the volume of the organic phase, the extraction is carried out twice using the same volume of the organic phase, which of the two procedure would you prefer and why? [3]

Question 3(25 marks)

- a) Define the following chromatographic terms:
 - i) Retention, time t_R
 - ii) Retention volume, V_R [2]
- b) Using an illustrative choromatogram, discuss how chromatographic methods can be employed for both quantitative and qualitative analysis of a sample. [7]
- c) Draw and label the schematic diagram of a 'Gas Chromatograph' (GC) [4]
- d) For the GC, discuss:
 - i) The main features of a packed column. [4]
 - ii) The function and the ideal properties of the solid support for the column. [4]
 - iii) The function and the idea! properties of the liquid phase for the column. [4]

Question 4(25 marks)

- a) In gas chromatography (GC) what is column efficiency? How is its value affected by N, the number of theoretical plates, and H, the plate height? What other factors affect it? [5]
- b) What is temperature programming in GC? Use a graphical illustration to show how it affects the resolution, R the retention time, t_r and the number of solutes eluted during a GC analysis. What are its advantages over the isothermal procedure? [11]
- Give five general applications of 'Gas Chromatographic analysis'. Give four examples of an industries and laboratories in Swaziland where this method is being used on routine basis.

Question 5(25 marks)

a)	Distinguish between 'Thin Layer Chromatography' (TLC) and 'Paper	
	Chromatography' from the following points of view:	
	i) the nature of the phase.	
	ii) the nature of the stationary phase	
	iii) resolution and sensitivity.	[6]
b)	Define R _f value, with regards to qualitative analysis in planar chromatography.	[2]
c)	For the analysis of a polar substance using the TLC method, give a brief procedure for the:	
	i) TLC plate preparationii) Identification of the separated components on the TLC plate.	[8] [9]

)

•			
Cuantity	Symbol	Value	General data and
Speed of light?	С	$2.99792458 \times 10^{8} \mathrm{m \ s^{-1}}$	fundamental
Elementary charge			constants-
Faraday constant	$F = eN_A$	9.6485 × 10 ⁴ C mol ⁻¹	
Boltzmann constant	k	1.380 66 × 10 ⁻²³ J K ⁻¹	
Gas constant	$R = kN_A$	8.31451 J K ⁻¹ mal ⁻¹	•
•	•	$8.205.78 \times 10^{-2}$ dm ³ atm K ⁻¹ mol ⁻¹	rangan dan salah sal Kanangan salah
		62.364 L Torr K ⁻¹ mal ⁻¹	•
Planck constant	h	$6.62608 \times 10^{-34} \text{ J s}$	
	$\dot{n} = h/2\pi$	$1.05457 \times 10^{-34}\mathrm{J}\mathrm{s}$	
Avogadro constant	NA	$6.02214\times10^{23}\mathrm{mol^{-1}}$	
Atomic mass unit	u ·	$1.66054 \times 10^{-27}\mathrm{kg}$	A A Company of the Co
Mass of			
electron	m.	$9.10939 \times 10^{-31} \text{ kg}$	•
proton	. m ₂	$1.672-62 \times 10^{-27} \text{ kg}$	ere ere
neutron	m	1.674 93 × 10 ⁻²⁷ kg	
Vacuum permeability†	iπο	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$	
•	3	$4\pi \times 10^{-7} \mathrm{T}^2 \mathrm{J}^{-1} \mathrm{m}^3$. *#
Vacuum permittivity	$\varepsilon_0 = 1/c^2 \mu_0$	$8.854 19 \times 10^{-12} \text{ J}^{-1} \text{ C}^2 \text{ m}^{-1}$	· · · · · · · · · · · · · · · · · · ·
- Portinitarity	4πε _ο	1.112 65 × 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹	
Bohr magneton	μ _s = efi/2m,	$9.27402 \times 10^{-24} \text{ J T}^{-1}$	
Nuclear magneton	$\mu_{N} = e fi/2m_{p}$	$5.05079 \times 10^{-27} \text{J} \text{T}^{-1}$	
Electron g value .	G.	2.002 32.	
Bohr radius	$a_0 = 4\pi \epsilon_0 h^2/m_e$	£ 5.291 77 × 10 ⁻¹¹ m	•
. constant	$R_{-} = m_{+}e^{4}/8h^{3}c$	$1.097 37 \times 10^5 \text{cm}^{-1}$	• • • • • • • • • • • • • • • • • • •
fine structure constant	$\alpha = \mu_0 e^2 c/2h$	7.29735×10^{-3}	
Gravitational constant	G	$6.67259 \times 10^{-11} \mathrm{N} \mathrm{m}^2\mathrm{kg}^{-1}$	
Standard 1 acceleration	. g	_ 9.806 65 m_s ⁻²	
of free fall†			t Exact (defined) values
fр	n " -		Duaffice
•	n μ m	edk MG	
femto pico		,	ga —
10-15 10-12	10-9 10-6 10-	³ 10 ⁻² 10 ⁻¹ 10 ³ 10 ⁶ 10	D ⁹

>

PERIODIC TABLE OF ELEMENTS
EL
Ŧ
0
Ξĺ
$\mathbf{3L}$
\overline{A}
E
\mathcal{C}
$\overline{}$
\mathbf{I}
2
) F

18 VIIIA 4.003 IIc	20.180 Nc 10	39.948 Ar 18	Kr 36 131.29	Xc 54 (222)	86	
VIIA	18.998 F	35.453 CI 17	9.504 Br 35 126.90	53 (210)	85 85	174 07
16 VIV	0 8	32.06 S 16	Se 34 127.60	Te 52 (209)	Po 84	193.04
V/ V	14.007 N	30.974 P 15	As As 33 121.75	Sb 51 208.98	Bi 83	. 60 63
14 IVA	12.011 C 6	28.086 Si 14	72.61 Ge 32 118.71	Sn 50 207.2	Pb 82	
13 IIIA	- 10.811	26.982 Al 13	69.723 Ga 31	In 49 204.38	T1 81	
113	7	·	65.39. Zn 30	Cd 48 200.59	IIg 80	
===	Atomic mass Symbol Atomic No.		63.546 Cu 29	Ag 47	Au 79	
10			58.69 Ni 28	Pd 46	Pt 78	Oll 110
GROUPS 9 VIIIB		ENTS	Co Co 27	Rh 45	11.77 77 77	Une 109
8		ELEM	55.847 Fe 26	Ru 44	Os 76	Uno 108
VIIB		TRANSITION ELEMENTS	54.938 Mn 25	98.90/ Tc 43	186.21 Re 75	Uns 107
VIIB		TRAN	51.996 Cr 24	95.94 Mo 42	183.85 W 74	(202) Unh 106
VIB			50.942 V 23	92.906 Nb 41	Ta Ta 73	(262) Ha 105
IVII			47.88 Ti 22		178.49 IH 72	(261) Rf 104
<u> </u>			44.956 Sc 21	88.906 Y 39	138.91 *La 57	(227) ** Ac 89
11V	9.012 Be	24.305 Mg	1.7	i	137.33 Ba 56	226.03 Ra 88
NOW 1	6.941	22.990 Na	39.098 K 19	85.468 Rb 37	132.91 Cs 55	223 Fr 87
PERIODS	2		4	5	9	2

								0,000	164 03	96 691	168 93		174.97
2	140.01	DC PV1	1	150.36	151.96	157.25	58.93	162.50	104.75	07./0			;
140.12	140.71	177.1			ŗ	7	Ţ	Č	Į.	<u></u>	E	_	ביו
ئ	Pr	Z		SH	n Si	20	αΤ	, J	, t	100	07		71
, ;	(5)	9	19	29	63	64	65	99	/9	90	ò	2	
28	7,	20		:					(6)	(120)	(258)	(656)	(260)
		100	1		(27/3)	(747)	(747)	(251)	(757)	(167)	(470)	() ()	
232.04	231.04	238.03		(744)	(647)			,	Ğ	2	<u> </u>	ŝ	ڌ
	٥	1		υ.	Αm	E C	ЗK	5	3	111.1			103
	<u>بر</u>	-		۲ ۲		,	100	80	66	001	101	107	co-
0	6	6		94	95	200	7 %	0,	`				
2	-	1			1].	1	9:1.				
		1,	2 0000	The isotope with the longest half-the	cipo ison	one will.	i the lon	gerr nail	-1176.				
-	1110	ו וממוכמופיצ ונו	e mass a	2000									

*Lanthanide Series

**Actinide Series