UNIVERSITY OF SWAZILAND FIRST SEMESTER EXAMINATION, 2014/2015

TITLE OF PAPER

Instrumental Methods For

Environmental Analysis - 1

COURSE NUMBEER:

EHS 573

TIME ALLOWED

Two(2) Hours

INSTRUCTIONS

Answer any four (4) questions. Each

Question carries 25 marks.

A periodic table and other useful data have been provided with this paper.

You are not supposed to open this paper until permission to do so has been granted by the Chief Invigilator.

Question 1(25 marks)

经济企业主张了过程的股份

- (a) Identify the major differences between classical and instrumental methods of analysis.
- (b) Summarize the unique advantages of instrumental methods of analysis over the classical methods. [4]
- (c) List the principal classes of chemical instrumentation. Give two specific examples of instrumental techniques from each principal class given. [6]
- (d) With the help a labeled diagram, show the basic components of an instrument for chemical/environmental analysis. Discuss the functions of any one of the components and give an example in named equipment. [8]
- (e) List and define five salient performance characteristics of an instrument for environmental analysis. [5]

Question 2 (25 marks)

- (a) Explain the following terms and obtain a relationship between them:

 'Transmittance' and 'Absorbance'. [3]
- (b) Discuss very briefly, the effects of a medium's refractive index on the wavelength, velocity and frequency of a radiation passing through the medium.

 [3]
- [c] The wavelength of the sodium D line is 589 nm.
 - (i) Calculate its frequency, wave-number and energy.
 - (ii) Suppose another line is observed at a wavelength of 450nm. Is this line of a higher energy than the sodium D line (at 589 nm)? [11]
- (d) An environmental sample with an active ingredient, A (F.W. = 270), has a molar absorptivity ∈ = 703 M⁻¹cm⁻¹ at a wavelength of 262nm. A given amount of the sample was dissolved with water in a 5L volumetric flask and then made to the mark. A 1.00-cm cell was used to measure the absorbance of the solution at 262nm, and a reading of 0.275 was obtained. Calculate the amount of A (in grammes), present in the sample. [8]

Question 3 (25 marks)

(a) What is a spectrophotometer? State four of its basic components and their corresponding functions. [8]

(b)	What is the requirement for a cell material before it can be used for a spectral region?	particular [1]
(c)	Give two examples of materials generally used for each of the follow (i) UV & Visible; (ii) IR	ring regions: [4]
(d)	With respect to the 'Mull' and 'KBr Pellet' used during spectroscopic	c analysis:
	(i) State the nature of samples for which they are used and their is spectral regions of application.	respective [2]
	(ii) Briefly describe how they are prepared.	[6]
(e)	What precautionary measures need be taken in the handling of a cell/cuvet during a UV-Visible spectroscopic analysis? Why are thes crucial?	e measures [4]
Ques	stion 4 (25 marks)	
(a)	What is a monochromator?	[2]
(b)	For a spectrophotometer, list the components of a monochromator system the respective functions of each component given.	tem and state [7]
(c)	For each of the following spectral regions, suggest an appropriate morprism material: (i) Visible (ii) UV (iii) IR Justify your choice.	accromator [4]
(d)	Discuss the advantages and disadvantages of 'diffraction gratings' who with a 'glass prism' as dispersing media in monochromators for spectrophotometers.	en compared
(e) (i	 i) Explain the term 'dispersion of a prism'. Hence, briefly describe the principles of a prism as a monochromator dispersing medium. 	working
(ii	i) List the factors that increase the resolution of a 'prism' and 'diffraction of a 'prism' and	ion gratings' [8]
Que	stion 5 (25 marks)	
(a)	Explain the term 'source' with regards to atomic spectroscopic metho examples and state four of its ideal goals.	ds. Give two [7]

(0)	DIS	cuss the major limitations of atomic spectroscopic methods.	[2]
(c)	For	the flame atomic absorption spectrophotometry (FAAS):	
	(i)	What analyte property is measured and in what units?	[2]
	(ii)	Draw and label a schematic diagram of the 'atomic absorption	
		spectrophotometer'	[4]
	(iii)	Briefly describe its working principles	[8]
	(iv)	Give four examples of environmental pollutants it can be used to analy	ze.
			[2]
Qu	estion	6(25 marks)	
		w cathode lamp is a vital primary source of radiation in atomic absorption try. Discuss:	nc
(a)		eatures as a sharp line radiation source.	[3]
(b)	Its st	ructure (configuration) plus a schematic diagram of it.	[7]
(c)	Its w	vorking principles.	[10]
(d)	The	composition and short comings of multielement hollow cathode lamps.	[6]
(e)	The	essence of the cylindrical structure of the cathode tube.	[2]

:

ŧ

:

18	VIIIA	2	He	4.003	10	Ne	20.18	18	Ar	39.95	36	Kr	83.80		54	Xe	131.3	98	Rn	222			٠
17	VIIA				6	<u> </u>	19.00	1.1	ひ	35.45	35	Br	79.91		53	_	126.9	85	At	210			
91	VIA				∞	0	16.00	16	S	32.06	34	Se	78.96		52	Te	127.6	84	Po	210			
15	VA				7	Z	14.01	15	<u>ہم</u>	30.97	.33	As	74.92		51	$\mathbf{S}\mathbf{p}$	121.8	83	Bi	208.9			
14	IVA				₁ 9	೦	12.01	14	Si	28.09	32	g	72.59		20	Sn	118.7	82	Pb	207.2			
13	IIIA				5	<u> </u>	10.81	13	V	26.9	31	Сa	69.7		49	In	114.8	81	I	204.4			
12	IIB										30	Zn	65.37		48	Cq	112.4	08	Hg	200.6			
1	IB		\			↓					29	Cn	63.54		47	Ag	107.9	62	Au	196.9			
10		FTATC	מתעוז			METALLOIDS					28	Ż	58.71		46	Pd	106.4	8/	Pt	195.1			
6	VIIIB	NON-METALS	TAT-ATOA			META					27	ပ	58.71		45	Rh	102.9	22	ŗ	192.2	109	Une	
∞		_	7					r.0			56	Fe	55.85		44	Ru	101.1	9/	S	190.2	108	Uno	
7	VIIB							METALS			25	Mn	54.9		43	Tc	6.86	75	Re	186.2	107	Uns	
9	VIB			ı			_		†		24	Ċ	52.01		42	Mo	95.94	74	≫	183.8		Unh	
5	VB						-				23	>	50.94		41	S.	9:1.22	73	Ta	180.9	105	Unp	i
4	IVB										22	Ξ	47.90		40	Zr	91.22	72	Hf	178.5	104	Und	·
3	IIIB			,			· · ·				21	. (Š	44.96	39	X	88.91	71	Lu	174.9	103	Lr	257
2	IIA				4	Be	9.01	12	Mg	24.31	50	C _a	40.08		38	Sr	87.62	99	Ba	137.3	88	Ra	226.0
	IA	_	Ξ.	1.008	3	Li	6.94	11	Na	22.99	16	×	39.10		37	Rb	85.47	55	CS	132.9	87	자	223
Group		Period	→ .			2		(m			4	•			S		· · ·	9			_	

	57	58	59	09	61	62	63	64	99	99		89	69	70
Lanthanides	La	Ce	Pr	Nd	Pm	Sm	Eu	P.S	Tb	Dy	Ho	Er	Tm	Yb
	138.9	140.1	140.9	144.2	146.9	150.9	151.3	157.3	158.9	162.5	164.9	167.3	168.9	173.0
	68	06	91	92	93	94	95	96	97	86	66	100	101	102
Actinides	Ac	Th	Pa	Ω	dN	Pu	Am	Cm	Bk	Ct	Es	Fm	Md	N_0
	227.0	232.0	231.0	238.0	237.1	239.1	241.1	247.1	249.1	251.1	254.1	257.1	258.1	255

DATA SHEET

General Data

Avogadro's number $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ Boltzmann's constant $k_B = 1.38 \times 10^{-23} \text{ J/K}$ Density of mercury = $1.36 \times 10^4 \text{ kg/m}^3$ Gas constant $R = 8.314 \text{ J/(mol \cdot K)}$ Gravitational acceleration $g = 9.80 \text{ m/s}^2$ Refractive index of air $n_{air} = 1.00$ Standard atmospheric pressure = $1.013 \times 10^5 \text{ Pa}$ Speed of light in vacuum $c = 2.997 \times 10^8 \text{ m/s}$ Speed of sound in air $v_s = 343 \text{ m/s}$ Stefan-Boltzmann constant $\sigma = 5.67 \times 10^{-8} \text{ W/(m}^2 \cdot \text{K}^4)$ Threshold of hearing $I_0 = 10^{-12} \text{ W/m}^2$ Universal gravitational constant $G = 6.67 \times 10^{-11} \text{ N·m}^2/\text{kg}^2$ 1 calorie = 1 c = 4.186 J

1 food calorie = 1 Calorie = $1C = 10^3$ calories = 4.186×10^3 J

Water data

$$c(water) = 4186 \text{ J/(kg·K)}$$
 $c(ice) = 2090 \text{ J/(kg·K)}$ $c(steam) = 2079 \text{ J/(kg·K)}$
 $L_t(ice) = 3.33 \times 10^5 \text{ J/kg}$ $L_v(water) = 2.260 \times 10^6 \text{ J/kg}$
 $\rho \text{ (water)} = 1000 \text{ kg/m}^3$ refractive index $n_w = 1.333$

Electricity and nuclear data

Alpha particle mass = $6.644 657 \times 10^{-27} \text{ kg}$ Charge of an electron = $-1.6 \times 10^{-19} \text{ C}$ Charge of a proton = $+1.6 \times 10^{-19} \text{ C}$ Coulomb's constant $k_e = 8.987 5 \times 10^9 \text{ Nm}^2/\text{C}^2$ Deuteron mass = $3.343 583 \times 10^{-27} \text{ kg}$ Electron mass, $m_e = 9.109 \times 10^{-31} \text{ kg}$ Neutron mass $m_n = 1.675 \times 10^{-27} \text{ kg}$ Proton mass, $m_p = 1.673 \times 10^{-27} \text{ kg}$ 1 atomic mass unit = 1 amu = 1 u = $1.66 \times 10^{-27} \text{ kg}$ $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 (\text{N·m}^2)$ 1 Ci = $3.7 \times 10^{10} \text{ decays/s}$ 1Bq = 1 decay/s $MAP = P_{dia} + \frac{(P_{sys} - P_{dia})}{3}$