UNIVERSITY OF SWAZILAND Faculty of Health Sciences Department of Environmental Health Science

B.Sc. Degree in Environmental Management and Occupational Safety and Health

MAIN EXAMINATION PAPER MAY 2015

TITLE OF PAPER

Wastewater Management

COURSE CODE

: EHM418

DURATION

: 2 HOURS

MARKS

: 100

INSTRUCTIONS

: THERE ARE FIVE QUESTIONS IN THIS EXAM

: ANSWER ANY FOUR OUT OF THE FIVE QUESTIONS

: EACH QUESTION CARRIES A MAXIMUM MARK OF 25

FINAL EXAM

EHM 418 May 2015

Question One (25 Marks)

In a BOD determination, 6 mL of wastewater are mixed with 294 mL (total volume of BOD bottle is 300 mL) of diluting water containing 8.5 mg/L of dissolved oxygen. After a 5 day incubation period at 20 °C, the dissolved oxygen content of the mixture is 2.0 mg/L. Assume that the initial dissolved oxygen concentration in the wastewater is zero and that the following equation applies:

$$BOD, \frac{mg}{L} = \frac{D_1 - D_2}{P}$$

Where: D_1 = Dissolved oxygen of diluted sample immediately after preparation, mg/L D_2 = Dissolved oxygen of diluted sample after 5 day incubation period at 20 0 C, mg/L

P = Fraction of wastewater sample volume to total combined volume.

- i) Calculate the BOD of the wastewater. [13 Marks]

Question Two (25 Marks)

(Each question below carries 5 marks)

- 2A. Describe the following types of settlement of solids in wastewater treatment processes:
 - i) Discrete particle settling (2 marks)
 - ii) Flocculent settling (2 marks)
 - iii) Hindered (zone) settling (1 mark)
- 2B. For each of the particle settlement processes listed in question 2A above, give an example of unit operations in wastewater treatment plants in which such settlement process may take place.
- 2C. List possible <u>physical unit operations</u> for the removal of each of the following waste water constituents; (1 mark each)
 - i) Removal of ammonia, hydrogen sulphide and other gases
 - ii) Removal of volatile and semi volatile organic compounds
 - iii) Removal of colloidal solids
 - iv) Removal of dissolved organic and inorganic matter
 - v) Removal of sand and grit
- 2D. Describe possible methods for breaking up chemically emulsified fat, oil and grease and second stage treatment techniques for their removal.
- 2E. Describe commonly used dewatering technics for solids collected from wastewater treatment processes.

Question Three (25 Marks)

3A.	Define the following terms in relation to chemical methods of wastewater treatment		
		i) Advanced oxidation (2 marks)	
		ii) Isotherm (2 marks)	
		iii) Regeneration (1 mark)	
		[5 Marks]	
3B.	State th	ne capabilities and limitations of advanced oxidation process for disinfection of	
	wastew	vater	
3C.	List the chemical methods that are available for the removal of phosphorous from		
	wastew	vater [5 Marks]	
270	T 1*		
3D.		e the designated zone of coagulation each of the following combination of turbidity	
	and coa	agulant doses. State also the mechanism of coagulation in each case.	
		(2.5 marks each)	
	i)	Low turbidity of raw waste water and low concentration of coagulant	
	ii)	High turbidity of raw waste water and moderate concentration of coagulant	
	iii)	High turbidity of raw waste water and high concentration of coagulant	
	iv)	High turbidity of raw waste water and very high concentration of coagulant	
		[10 Marks]	

Question Four (25 Marks)	(Note: each question below carries 5 marks)
---------------------------------	---

4A.	Describe two mechanisms by which nitrification may be achieved in activated sludge processes.
4B.	Draw a diagram of i. The post anoxic nitrification process(3 marks) ii. The pre anoxic denitrification process(2 marks)
4C.	State for aerobic autotrophic waste assimilation processes involving nitrification: i. The input ingredients(3 marks) ii. The outputs
4D.	Describe process control mechanisms for activated sludge processes.
4E.	Describe methods for controlling bulking in activated sludge

Ouestion Five (25 marks) (Note: each question below carries 5 marks)

- 5A. What is the purpose of recirculation of recycled effluent to trickling filters?
- 5B. What factors should be considered when selecting rocks for percolating filters?
- **5C.** Draw a diagram of submerged attached growth process labelling the essential components.
- **5D.** How do you evaluate the suitability of anaerobic processes under the following conditions: (1 mark each)
 - i. Low temperature environments
 - ii. Seasonal wastewater generation
 - iii. Provision of adequate treatment to satisfy effluent discharge requirements
 - iv. Energy saving
 - v. Nutrient removal
- **5E.** Give examples of waste water characteristics in which pH adjustment may become necessary in anaerobic treatment of wastewater.