University of Swaziland

Final Examination – November 2014

BSc in Environmental Sciences I

Title of Paper

: Algebra for Health Sciences

Course Number: EHM106

Time Allowed

: Two (2) hours

Instructions:

1. This paper consists of 2 sections.

2. Answer ALL questions in Section A.

3. Answer ANY 2 questions in Section B.

4. Show all your working.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Section A Answer ALL Questions in this section

A.1 a. Evaluate

$$\sum_{n=0}^{70} (4n+3).$$
 [10 marks]

b. Expand using the binomial theorem

$$\left(2x^2 - \frac{1}{x}\right)^5.$$
 [10 marks]

c. Use synthetic division to evaluate

$$\frac{x^4 - x^3 + 2x - 7}{x - 2}$$
. [5 marks]

d. Find the length of the straight line AB between A(-3,2) and B(1,-6).

[5 marks]

e. Solve for x given

i.
$$\log_7(10x - 1) = 2$$
 [5 marks]
ii. $3^{x+1} = 70$ [5 marks]

f. Given the matrices $A=\left(\begin{array}{cc}1&2&-1\\-2&0&3\end{array}\right)$ and $B=\left(\begin{array}{cc}2&-1\\3&-2\end{array}\right)$, find the value of

i.
$$A^TB$$
 [5 marks]

ii.
$$B^TA$$
 [5 marks]

Section B Answer ANY 2 Questions in this section

B.1 a. Use Cramer's rule to solve

$$3x - 2y + z = 13$$

 $2x + y - 3z = -2$ [18 marks]
 $x - 7y = 23$.

b. Find the value(s) of the scalar a such that the vectors $\underline{A} = 4a\hat{i} + 2a\hat{j} + 3\hat{k}$ and $\underline{B} = 3a\hat{i} + 4\hat{j} - 5\hat{k}$ are perpendicular. [7 marks]

B.2 a. Find the value of

i. $20 + 25 + 30 + \cdots + 2{,}000$

[5 marks]

ii.
$$\sum_{n=0}^{\infty} 30 \left(\frac{2}{5}\right)^n$$

[5 marks]

- b. A child on a swing is given one big push, riding through a 5 metre arc. If the lengths of successive swings decrease by 5%, find the total distance travelled by the child as the swing comes to a stop.
 [3 marks]
- c. Prove that

$$1 - \frac{\cos^2 A}{1 + \sin A} = \sin A.$$
 [8 marks]

d. Find the general solution of

$$\cos(\theta - 10^0) = -\frac{1}{2}.$$
 [4 marks]

B.3

a. Work out and express in the form a + ib.

i.
$$2i(2+3i)-3i(3-2i)$$

[3 marks]

ii.
$$\frac{3-4i}{4+3i}$$

[4 marks]

iii.
$$(\sqrt{3} - i)^6$$
 (using de Moivre's theorem)

[6 marks]

b. Given that x + 3 is a factor of the polynomial $P(x) = x^3 + Ax^2 + Bx - 6$, while dividing P(x) by x - 1 leaves a remainder of -8, find the values of A and B.

[6 marks]

c. Find the coordinates of the centre and radius of the circle with equation

$$2x^2 + 2y^2 - 10x + 6y - 183 = 0.$$
 [6 marks]

B.4

a. Solve

$$\log_5 x + \log_5(x - 4) = 1.$$
 [8 marks]

b. In a college campus with a population of 2,000, the number of people that have heard a rumour is given by

$$P(t) = 2,000(1 - e^{-0.09t}),$$

where t is the number of days after the rumour has began. Find the

i. number of people that have heard the rumour after 2 days

[2 marks]

ii. number of days it takes for 50% of college to hear the rumour.

[5 marks]

c. For the binomial expansion of

$$\left(x+\frac{y}{x}\right)^{24}$$
,

find the

i. first 4 terms

[6 marks]

ii. the 19th term

[4 marks]