UNIVERSITY OF SWAZILAND DEGREE IN GENERAL NURSING SUPPLEMENTARY EXAMINATION PAPER 2013/14 TITLE OF PAPER INTEGRATED BASIC SCIENCES **COURSE CODE** HSC 106 TIME 3 HOURS **TOTAL MARKS** 100 MARKS **INSTRUCTIONS** THIS QUESTION PAPER HAS SEVEN (7) QUESTIONS : ANSWER ANY FOUR QUESTIONS : EACH QUESTION IS 25 MARKS : A PERIODIC TABLE AND DATA SHEETS ARE PROVIDED WITH THIS EXAMINATION PAPER : NO FORM OF ANY PAPER SHOULD BE BROUGHT INTO NOR TAKEN OUT OF THE **EXAMINATION ROOM** : BEGIN THE ANSWER TO EACH QUESTION ON A SEPARATE SHEET OF PAPER : ALL CALCULATIONS/WORKOUT DETAILS SHOULD BE SUBMITTED WITH YOUR ANSWER SHEET(S) DO NOT OPEN THIS EXAMINATION PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR. ### **QUESTION 1 [25 MARKS]** Recall: - Convert the following figures to the units indicated: [6] a) - 1.02 kg g 72 pulse/min.....pulses/sec i) v) - ii) 25 mL.....L vi) 20 oz/gal.....g/L 1 minute = 60 secs - iii) - $50~\mu g$mg $1.2 \times 10^{24}~atoms$moles iv) Recall: 1 minute = 60 secs $$1 \text{ oz} = 28.4 \text{ g}$$ 1 in. = 2.54 cm $1 \text{ gal} = 3.8 \text{ L}$ $6.023x10^{23} = 1 \text{ mole}$ An order for medication reads: "Give 1.49 mg per kilogram of body weight." b) How much medication should be given to a patients of 165 lb. [2] $$1 lb = 0.4536 kg$$ A nurse by the name of Nontobeko recorded the temperature of a patient as 98.8 °F. c) Another nurse "Velaphi" recorded the temperature of another patient as 38.2 °C. Which patient has fever? [2] Useful equation: $${}^{o}F = \frac{9}{5}{}^{o}C + 32^{o}$$ - Write short notes explaining the differences between any one of the following pairs: c) - i) Accuracy and precision [4] - ii) Systematic and random errors - d) The following weights of tablets were given to pregnant women to use as Iron supplements: 5.8 g, 6.2 g, 5.6 g and 5.9 g. Calculate: - i) The mean [2] - Standard deviation [2] ii) - Coefficient of variation [1] iii) - iv) % Relative error given that the right weight for iron supplementation as recommended by the WHO is 5.5 g.[2] ### Useful Formulae: standard deviation $$S_x = \sqrt{\frac{\sum_{i=1}^{N} (\bar{x} - x_i)^2}{N - 1}}$$; mean $\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N}$ ### Question 2 [25 Marks] Briefly discuss the differences between following pairs of terms. (a) (i). Compounds and Mixtures [4] (ii). Colloids and solutions (b) Which of the following events are chemical changes and which ones are physical changes. (1) When heated in a pan, sugar turns brown (caramelizes). [1] (2) When stirred in water, table salt seems to disappear. [1] A bleaching agent causes a coloured fabric to lose its colour. (3) [1] **(4)** A silver fork tarnishes slowly in air. - [1] Define the Daltons' Atomic Theory. In your answer, using an example of your choice, (b) explain the flaws (problem) with this theory. [12] ### **QUESTION 3 [25 MARKS]** (c) a) Explain the difference between the following pairs of terms. Give examples for each pairs. ¹⁶O is 0.20%, Calculate the relative atomic weight (in g/mole) of oxygen. [1] Given that the natural abundance of oxygen isotopes: ¹⁶O is 99.76%, ¹⁷O is 0.04% and i) Ionic bonding and Covalent bond [4] - ii) Hunds rule and Pauli Exclusion Principle [4] - b) Based on the electronic configurations of the elements, explain why each of the following is true [5]: - (i) ionisation of neon is greater than that of Fluorine - (ii) atomic radius of sulfur is less than that of sodium - (iii)ionisation of oxygen is less than that of nitrogen - (iv)electron affinity of carbon is greater than that of nitrogen - (v) Electronegativety of bromine is greater than that of potassium - c) Draw Lewis structures or diagrams to show and name the type of bonding for each of the following: [4] - (i) calcium chloride - (ii) NH_4^+ - (iii) H₂O $$NH_3 + BF_3 \rightarrow NH_3BF_3$$ (iv) CH_2CH_2 - c). i) Using Hunds rule, Aufbau buidling up principle and the periodic table write the electronic configurations of <u>any Three</u> of the following elements. [4] Arsenic Lead Cadmium Mercury - ii) Identify and name environmental hazards of the elements that you have chosen in c(i) from the pictures below and indicate the most likely sources. ### **QUESTION 4 [25 MARKS]** - a) i) Define a buffer solution [2] - ii) Name four kinds of buffers found in the body. [8] write the appropriate equation for each buffer - b) Briefly discuss any one of the following: [6] - i) Respiratory Acidosis - ii) Metabolic Acidosis In your discussion include the cause, the symptoms and the treatment. - c) A 28 year old homeless man is rushed to RFM hospital. He is comatose and in respiratory depression. The emergency department nurse recognizes this patient as having a previous history of drug use including heroin. The arterial blood gases show a pH of 7.21; total CO₂ of 52 mm Hg; and a HCO₃⁻ of 28 mmol/L. - i) Using the data given diagnose the condition of the patient, giving specific reasons for your diagnoses. [6] - ii) What treatment would you prescribe. [3] ### Question 5 [25 Marks] a) Write short notes on the following terms: [12] - i) isotonic solutions - ii) hypotonic solutions - iii) hypertonic solutions Give examples for each and define the use or dangers of each in the body. [4] | (ס | Balance | e each o | it the following chen | ncai equa | nons. | | | |-----------|--|---|---|---|---|---|-----------------| | | i) | $C_3H_8+C_3H_8$ | $O_2 \rightarrow CO_2 + H_2O$ | | [2] | | | | | ii) | $SO_2 + I$ | $-INO_3 \rightarrow H_2SO_4 + N$ | O | [2] | } | | | | iii) | Fe ₂ (SO | 4) ₃ +NH ₃ +H ₂ O→Fe(| $OH)_3+(N)$ | | | | | c) | | rbic aci | of orange juice is tite
d C ₄ H ₇ O ₄ COO <u>H</u>) re
write a balanced equ | quires 40 | mls of NaOI | | | | | | | Calculate the mass o | | | ige juice | [3] | | | | - | Calculate the percen | | | | [2] | | <u>Qu</u> | estion 6 [25 | Marks | Bl | | | | | | a) | Using diagr | rams ex | plain why water diss | olves Na(| Cl to form an | electrolyte solut | ion [5]. | | b) | CaCO ₃ , to 1 (i) Wr (ii) Ca [4] (iii) Wr | form cal
rite the l
lculate t
nat is the | acid, H ₂ CO ₃ , in 10 leium hydrogen carb palanced equation fo the amount of calcium concentration of calcium the original concentration | onate, Can
the react
m hydrogo
dcium hyd | (HCO ₃) ₂ .
tion. [1]
en carbonate
drogen carbo | , Ca(HCO ₃) ₂ proc | luced in g. | | c) | List and des | scribe th | nree major sources o | f water po | llution. [3] | | | | d) | Explain the | differe | nce between perman | ent and te | mporary wat | er hardness. [6] | | | e) | Explain any | three n | nethods of purification | on. [3] | | | | | | | | | | | | | | <u>Qu</u> | estion 7[25 | Marks] | L | | | | | | a) | Give the goompounds | | chemical formulae | for the | following | major classes | of organic [4] | | | | a)
b) | carboxylic acids aldehydes | | | | | | | | c) | alcohols | | | | | | | | d) | esters | | | | | | | | Give an | example and one go | eneral use | in human he | ealth for each | | | b) | Name th | ne follov | wing organic compo | unds | | 0 | [4] | | | | | | | | OH OH O | , | | | | a) | CH₃CH₂OH | | b) | CH₃CH₂Ĉ−H | i | | | | | 3 -2 - | | , | | | | | | b) | | | (d) | CH ₃ CH ₂ CH ₂ C | .H ₃ | | | | | | | | | | | | | | | | | | | - Write short notes on the metabolic reactions of the following c) [12] - (i). carbohydrates - (ii). fats - proteins (iii). - Using chemical reactions give the chemical tests for $\underline{\mathbf{ANY}\ \mathbf{FIVE}}$ the following c) compounds: - sugars fats i) - ii) - proteins alcohols . alkanes iii) - iv) - v) - vi) alkenes ## NORMAL LABORATORY VALUES FOR BLOOD TESTS | | USUAL REFER | RENCE RANGE | |------------------------------|---------------------------|------------------------| | Specific Gravity | | 1.056 | | Hemoglobin Count Hb | | Men: 14 - 18g /dL | | | | Women: 12 -16 g/dL | | HCO ₃ Bicarbonate | 24 - 28 mmol/L | 24 - 28 mEq/L | | Glucose | (3.6-6.1 mmol/L) | 65 - 110 mg/dL | | BUN (Blood Urea Nitrogen) | 2.9 - 7.1 mmol/L | 8 - 20 mg/dL | | Ca ⁺² | (2.1-2.6 mmol/L) | 8.5 - 10.3 mg/dL | | Cl ⁻ | (96-106 mmol/L) | 96 - 106 mEq/L | | Cholesterol | | 150 - 220 mg/dL | | CO_2 | 24-29 mmol/L | 24-29 mEq/L | | PCO ₂ | | 35-45 mmHg | | PO_2 | | 80 - 100 mm Hg | | pН | | 7.35 - 7.45 | | Fatty acids | 0.3-0.8 mmol/L | 0.3-2 mg/dL | | Protein | | 6-8 μg/dL | | Phosphate | 1 - 1.5 mmol/L | 3-4.5 mg/dL | | ketone bodies | | 0.3-2 mg/dL | | K ⁺ | 3.5-5 mmol/L | 3.5 - 5 mEq/L | | Na ⁺ | 136-145 mmol/L | 136 - 145 mEq/L | | Uric Acid | Men: 0.18 - 0.54 | Men: 3 - 9 mg/dL | | | Women: 0.15 - 0.46 mmol/L | Women: 2.5 - 7.5 mg/dL | | | | Children: 1.5 g/L | | | | (150mg/dL) | # THE PERIODIC TABLE OF ELEMENTS | 18 | VIIIA | 12
He
4.003 | New York | 18
A 1 | | R.S. | 86
 Ru
995 | R Canada | |-------|-------|--|------------------------|--------------------------|----------------------------|--------------------------|--------------------------|--------------------------| | 17 | VIIA | | 9
F | Z D 35 | 35
Br :
79.9[| 53 II
L | 85
At
210 | | | 16 | VIA | The same of sa | 8 | . S. S. | 34
Se
78.96 | 52
Te
127.6 | 84
Po
210 | | | 15 | VA | The state of s | Z N 1 | 15
P 5
30.97 | 33
As
74.92 | 51
Sb
121.8 | 83
Bi
208.9 | | | 14 | IVA | Williams statement of the t | C C | Si
28.09 | 32
Ge
72.59 | 50
Sn
118.7 | 82
Pb
207.2 | | | 13 | IIIA | | 5
B
10.81 | 13
Al
26.9 | 31
Ga
69.7 | 49
In
114.8 | 81
TI
204.4 | | | 12 | IIB | NAME OF THE PROPERTY PR | | | 30
Zn
65.37 | 48
Cd
112.4 | 80
Hg
200.6 | | | | IB | | ţ | | 29
Cu
63.54 | 47
Ag
107.9 | 79
Au
196.9 | | | 10 | | TALS | METALLOIDS | | 28
Ni
58.71 | 46
Pd
106.4 | 78 Pt 195.1 | | | 6 | VIIIB | NON-METALS | METAI | | 27
Co
58.71 | 45 Rh 102.9 | 77
Ir
192.2 | 109
Une | | 8 | | 2 | | | 26
Fe
55.85 | 44 Ru 101.1 | 76
Os
190.2 | 108
Uno | | 7 | VIIB | | | METALS | 25
Mn
54.9 | 43
Tc
98.9 | 75
Re
186.2 | 107
Uns | | . 9 | VIB | | | . ↑ | 24
Cr
52.01 | 42
Mo
95.94 | 74
W
183.8 | 106
Unh | | 2 | VB | | | | 23
V
50.94 | 41
Nb
91.22 | 73
Ta
180.9 | 105
Unp | | 4 | IVB | | | | 22
Ti
47.90 | 40 Zr 91.22 | 72
Hf
178.5 | 104
Unq | | 3 | IIIB | | | | 21
Sc
44.96 | 39
Y
88.91 | 71
Lu
174.9 | 103
Lr
257 | | 2 | IIA | | 4 Be 9.01 | 12
Mg
24.31 | 20
Ca
40.08 | 38
Sr
87.62 | 56
Ba
137.3 | 88
Ra
226.0 | | - | IA | 1
H
1.008 | 3
Li
6.94 | 11
Na
22.99 | 19
K
39.10 | 37
Rb
85.47 | 55
Cs
132.9 | 87
Fr
223 | | Group | | Period 1 | 2 | 3 | 4 | 5 | 9 | 7 | | | 57 | 58 | 59 | 09 | 19 | 62 | 63 | 64 | 65 | 99 | <i>L</i> 9 | 89 | 69 | 70 | |---|------------|-------------------|------------|-----------|------------|------------|-------------|----------|-------|-------|------------|-------|-------|-------| | Lanthanides | La | ပီ | Pr | Nd | Pm | Sm | Eu | g | Tp | Dy | Ho | Ϋ́ | Tm | Vb | | | 138.9 | 138.9 140.1 | 140.9 | 144.2 | 146.9 | 150.9 | 151.3 | 157.3 | 158.9 | 162.5 | 164.9 | 167.3 | 168.9 | 173.0 | | | 68 | 06 | 91 | 65 | 93 | 64 | 95 | 96 | - 26 | 86 | 66 | 100 | 101 | 102 | | Actinides | Ac | Th | Pa | Ú | Np | Pu | Am | Cm | Bk | Ct | ES | Fm | Md | No | | | 227.0 | 227.0 232.0 231.0 | 231.0 | 238.0 | 237.1 | 239.1 | 241.1 | 247.1 | 249.1 | 251.1 | 254.1 | 257.1 | 258.1 | 255 | | Numbers below the symbol indicates the atomic masses; and the n | the atomic | masses; a | nd the nur | nbers abo | ve the syn | nbol indic | ates the at | omic num | bers. | | | | | | | Useful Relations | 8 | e de la companya l | | General Data | | | |--|--|--|--|---------------------------|--|---| | | | Andrewskie in the Committee of Commi | | | | | | $(RT)_{298\cdot15K}=2.4789 \text{ kJ/mol}$ | 89 kJ/mol | | | speed of light | 9 | 2.997 925x10 ⁸ ms ⁻¹ | | (RT/F) _{298-15K} =0.025 693 V | 125 693 V | | | charge of proton | e | 1.602 19x10 ⁻¹⁹ C | | T/K: 100.15 | 298.15 50 | 100.15 298.15 500.15 1000.15 | | Faraday constant | F=Le | 9.648 46x10 ⁴ C mol ⁻¹ | | T/Cm ⁻¹ : 69.61 207.22 347.62 695.13 | 207.22 34 | 17.62 695.13 | | Boltzmann constant | Y | 1.380 66x10 ⁻²³ J K ⁻¹ | | 1mmHg=133.222 N m ⁻² | 2 N m ⁻² | | | Gas constant | R=Lk | 8.314 41 J K ⁻¹ mol ⁻¹ | | hc/k=1.438 78x10 ⁻² m K | $0^{-2}\mathrm{m}\mathrm{K}$ | ARMIC AND REPORT THE RESIDENCE OF THE PROPERTY | THE REAL PROPERTY OF THE PROPE | | TAMASAA TAMASAA AA | 8.205 75x10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹ | | latm | 1 cal | 1 eV | 1cm ⁻¹ | | | | | =1.01325x10 ⁵ Nm ⁻² | n ⁻² =4.184 J | =1.602 189x10 ⁻¹⁹ J | =0.124x10 ⁻³ eV | Planck constant | | 6.626 18x10 ⁻³⁴ Js | | =760torr | | =96.485 kJ/mol | $=1.9864 \times 10^{-23}$ | | $h = \frac{h}{2\pi}$ | 1 054 50×10 ⁻³⁴ Ls | | | | The Croppe | | Avogadro constant | LorNa | 6.027 14v10 ²³ mol ⁻¹ | | SI-units: | A COMPANY OF THE PARTY P | | | Atomis mass unit | n | 1.660 54x10 ⁻²⁷ kg | | $IL = 1000 \text{ ml} = 1000 \text{cm}^3 = 1 \text{ dm}^3$ | $I000cm^3 = I c$ | tm ³ | | Electron mass | m e | 9.109 39x10 ⁻³¹ kg | | 1 dm = 0.1 m | | ere de la companya de la constitución constit | | Proton mass | m _p | 1.672 62x10 ⁻²⁷ kg | | 1 cal (thermochemical) = 4.184 J | mical) = 4.184 | | | Neutron mass | m | 1.674 93x10 ⁻²⁷ kg | | dipole moment: 1 Debye = $3.335 64 \times 10^{-30}$ C m | 1 Debye $= 3.3$ | 35 64x10 ⁻³⁰ C m | | Vacuum permittivity | $E_{o} = \mu_{o}^{-1} c^{-2}$ | 8.854 188x10 ⁻¹² J ⁻¹ C ² m ⁻¹ | | force: IN=IJ m ⁻¹ | $= Ikgms^{-2} = 10$ | force: $IN=IJ m^{-l} = Ikgms^{-2} = 10^5$ dyne pressure: $IPa=INm^{-2} = 1Jm^{-3}$ | $=INm^2=1Jm^{-3}$ | Vacuum permeability | $\mu_{\rm o}$ | $4\pi x 10^{-7} \text{ Js}^2 \text{C}^{-2} \text{ m}^{-1}$ | | IJ = I Nm
power: $1W = 11 \text{ s}^{-1}$ | Commence Columns Colum | potential: 1V =1 | $V = 1 J C^{-1}$ | Bohr magneton | $\mu_B = e\hbar/2m_e$ | $9.274~02{ imes}10^{-24}~\mathrm{JT}^{-1}$ | | magnetic flux: 1T=1Vsm ⁻² =1JCsm ⁻² | $=1 \text{ Vsm}^{-2} = 1 \text{ J}($ | Csm ⁻² current: 1A=1Cs ⁻¹ | \=1Cs ⁻¹ | Nuclear magneton | $\mu_{\rm N} = \frac{e\hbar}{2m_{\rm p}}$ | $5.05079 \times 10^{-27} \mathrm{JT^{-1}}$ | | <u>Prefixes:</u> | | | | Gravitational
constant | Ð | 6.67259x10 ⁻¹¹ Nm ² kg ⁻² | | u | m m | p | _ | Gravitational | 8 | 9.80665 ms ⁻² | | nano | o milli | deci | mega giga | acceleration | ORDERNI SERVICE SECURISE SECURISE PROPERTY CONTRACTOR C | | | 10 2 10 | 10, 10, | 10 ² 10 ¹ 10 ² | 1 | Bohr radius | a _o | 5.291 77x10 ⁻¹¹ m |