UNIVERSITY OF SWAZILAND DEGREE IN ENVIRONMENTAL HEALTH SCIENCE MAIN EXAMINATION PAPER 2013/14

:

TITLE OF PAPER

CHEMISTRY FOR HEALTH

SCIENCES

COURSE CODE

HSC 106

TIME

3 HOURS

TOTAL MARKS

100 MARKS

INSTRUCTIONS

THIS QUESTION PAPER HAS

SEVEN (7) QUESTIONS

: ANSWER FOUR (4) QUESTIONS

ONLY

: EACH QUESTION IS 25 MARKS

: A PERIODIC TABLE AND DATA SHEETS ARE PROVIDED WITH THIS EXAMINATION PAPER

: NO FORM OF ANY PAPER SHOULD BE BROUGHT INTO NOR TAKEN OUT OF THE EXAMINATION ROOM

: BEGIN THE ANSWER TO EACH QUESTION ON A SEPARATE SHEET OF PAPER

ALL CALCULATIONS/WORKOUT
DETAILS SHOULD BE
SUBMITTED WITH YOUR
ANSWER SHEET(S)

DO NOT OPEN THIS EXAMINATION PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1 [25 MARKS]

a)	Define the term SIU used in measurements and testing. [2]
b)	Express the following in SIU system.
	i) 20 μg ii) 123 dm iii) 4300 g cm s ⁻² [3]
c)	Give the SI units for the following: [2] i) Mass ii) Length
d)	 What do the following prefixes indicate? [3] i) micro, μ ii) femto, f iii) Mega, M
e) .	Convert the following figures to the units indicated: [7] (i). 750 μgkg (ii). 213 pmμm (iii). 1000 cm ³ mL (iv). 20 Mgmg (v). 2.5x10 ²⁴ atomsmoles (vi). 20.13 galL (vii). 0.434 mlm ³
	Recall: 1 minute = 60 secs 1 oz = 28.4 g 1 gal = 3.8 L 6.023x 10^{23} = 1 mole
f)	A 32.65 g sample of a solid is placed in a flask. Toluene, in which the solid is insoluble, is added to the flask so that the total volume of solid and liquid together is 50.00 mL. The solid and toluene together weigh 58.58 g. The density of toluene at the temperature of the experiment is 0.864 g/mL. What is the density of the solid? [3]
	Express your answer to the correct degree of precision
(g)	A child has a body temperature of 38.7 °C. (1) If normal body temperature is 98.6 °F, does the child have a fever? [3] (2) What is the child's temperature in kelvins, K? [2] Useful Equations: ${}^{\circ}F = \frac{9}{5} {}^{\circ}C + 32$; ${}^{\circ}C = \frac{5}{9} ({}^{\circ}F - 32^{\circ})$; $K = {}^{\circ}C + 273$
	Frages your answer to the correct degree of precision

QUESTION 2 [25 MARKS]

- a) Write short notes explaining the differences between the following pairs:
 - relative error (%RE) and relative standard deviation (%RSD) [6]
 - ii) determinate and indeterminate errors

b) A patient was to be given 1.514 mg of de-worming tablets. Two doctors Mxolisi and Zwakele weighed tablets five times to get the following readings:

Mxolisi	Zwakele
1.508	1.509
1.507	1.510
1.509	1.519
1.508	1.515

Calculate (for both Mxolisi and Zwakele):

- the mean [2] i)
- Standard deviation [2] ii)
- iii) % Relative standard deviation [2]
- % Relative error [2] i)
- c) Which measurements from 2(b) above are the most precise. [1] Justify your answer.
- d) Give correct readings of the following analog instruments [2]

- e) (i) Identify and name the type of error in one of the instruments in d) [1]
 - (ii) Determine the error in percentages in e(i) [1]

Useful Formulae:

standard deviation
$$S_x = \sqrt{\frac{\sum_{i=1}^{N} (\bar{x} - x_i)^2}{N-1}}$$
; mean $\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N}$

QUESTION 3 [25 MARKS]

- a) Write short notes on the following terms.
 - i). Aufbau building up principle [4]
 - ii). Law of Multiple proportions [1]
- b) Methane and propane are both constituents of natural gas. A sample of methane contains 5.70 g of carbon atoms and 1.90 g of hydrogen atoms combined in a certain way, wheres as a sample of propane contains 4.47 g of carbon atoms and 0.933 g of hydrogen atoms combined in a different way. Prove that the two compounds obey the Law of Multiple Proportions. [2]
- c) Identify and match the correct elements of Br, Pb, Fe, Au, P, S, I, Na and As represented by the pictures below [5]:

d) Name <u>any three</u> disorders shown by the following pictures and identify the associated elements given: As, Cd, Hg, Be, P [6]

e) Explain the following trends:

1	(i) Ato	omic Radii in a	Angstrom unit	s [2]		
	Н	Li	Na	K	Rb	Cs
	0.30	1.23	1.57	2.03	2.16	2.35

ionisation energies in kJ/mol [2] (ii) S Cl Na Αl Si P Ar Mg 999 496 737 577 786 1012 1255 1521

- f). Using Hunds rule, Aufbau building up principle and the periodic table write the electronic configurations of the following elements. [3]
 - (i) Ca
 - (ii) Cu
 - (iii) Ag

QUESTION 4 [25 MARKS]

- a) Write brief notes on <u>any one</u> of the following: [10]
 - (i) respiratory alkalosis
 - (ii) metabolic acidosis

Define the cause, symptoms and treatment.

- b) Define a buffer solution [2]
- c) Give the three types of buffer systems in the body [3]
- d) A patient had the following laboratory values for his blood sample:

HCO ₃	23 mEq/L	pН	7.6
PCO ₂	24 mm Hg		

- i) What is the mechanism of this acid-base imbalance, justify your answer [2]
- ii) What treatment would you prescribe [2]
- e) Write short notes on any Two of the following terms:
 - i) isotonic solutions

[2]

ii) hypotonic solutions

[2]

iii) hypertonic solutions

[2]

Give examples for each and define the use or dangers of each in the body.

Question 5 [25 Marks]

- a) Using equations and/or diagrams, explain the difference between electrolyte and non electrolyte solutions? [6]
- b) Balance each of the following chemical equations.

i)
$$C_7H_{16}+O_2 \rightarrow CO_2 + H_2O$$

[2]

ii)
$$K_2S_2O_3 + Cl_2+H_2O \rightarrow KHSO_4 + HCl$$

[2]

iii)
$$NaHCO_3+H_3PO_4 \rightarrow Na_2HPO_4+CO_2+H_2O$$

[2]

c) An antacid tablet was given to a patient to relieve stomach discomfort. Given that the antacid was magnesium hydroxide, Mg(OH)₂ which reacts with hydrochloric acid, HCl

$$Mg(OH)_2 + HCl \rightarrow MgCl_2 + H_2O$$

(i). Balance this equation.

[1]

- (ii). How many grams acid in the stomach will 1.50 g antacid tablet neutralise?[4]
- (iii) What would the pH of the stomach be if the antacid is not prescribed for the patient assuming fluid volume of 3 liters, L. [1]
- (iv). Using the reaction given how much salt in grams, MgCl₂, would be produced from 1.50 g antacid [2]
- (v). If the total fluid volume is 3 liters what would be the final concentration of MgCl₂ in moles per L (M). [2]
- (vi). Determine the final concentration of MgCl₂ in c(v) in mEq/L (N). [1]

- d) i) Convert 25.3 ppm to moles/L of KOH [1]
 - ii) Calculate the volume of a 20% (w/v) saline solution (NaCl) that is required to prepare a 5% solution (NaCl) in a 100 ml volumetric flask. [1]

Question 6 [25 Marks]

a) (i) Write short notes on <u>any Three</u> of the following pollutants. [9]

Oxygen Demanding Wastes Eutrophication Inorganic Wastes Organic Pesticides

(ii) Using examples briefly describe the chemical process involved in each of the following water purification methods. [8]

Ion exchange resins Chlorination Coagulation and sedimentation Sequestration

b) Explain the difference between permanent and temporary water hardness. [8]

Question 7 [25 Marks]

- a) Give the general chemical formulae for the following major classes of organic compounds. [10]
 - (i). carboxylic acids
 - (ii). aldehydes
 - (iii). alcohols
 - (iv). esters
 - (v). ethers
- b) Give an example and one general use for each of the following

[4]

[2]

(2)

- 1. Alkane
- 2. Alkene Name the following organic compounds
- a) CH₃CH₂Cl

[1]

b)

c)

b)

 $CH_3CH_2 CH_2 CH_3$ [2]

[2]

e)

f)

NORMAL LABORATORY VALUES FOR BLOOD TESTS

	USUAL REFER	ENCE RANGE
Specific Gravity		1.056
Hemoglobin Count Hb		Men: 14 - 18g /dL
		Women: 12-16 g/dL
HCO ₃ Bicarbonate	24 - 28 mmol/L	24 - 28 mEq/L
Glucose	(3.6-6.1 mmol/L)	65 - 110 mg/dL
BUN (Blood Urea Nitrogen)	2.9 - 7.1 mmol/L	8 - 20 mg/dL
Ca ⁺²	(2.1-2.6 mmol/L)	8.5 - 10.3 mg/dL
Cl	(96-106 mmol/L)	96 - 106 mEq/L
Cholesterol		150 - 220 mg/dL
CO_2	24-29 mmol/L	24-29 mEq/L
PCO ₂		35-45 mmHg
PO ₂		80 - 100 mm Hg
pН		7.35 - 7.45
Fatty acids	0.3-0.8 mmol/L	0.3-2 mg/dL
Protein		6-8 μg/dL
Phosphate	1 - 1.5 mmol/L	3-4.5 mg/dL
ketone bodies		0.3-2 mg/dL
K ⁺	3.5-5 mmol/L	3.5 - 5 mEq/L
Na ⁺	136-145 mmol/L	136 - 145 mEq/L
Uric Acid	Men: 0.18 - 0.54	Men: 3 - 9 mg/dL
	Women: 0.15 - 0.46 mmol/L	Women: 2.5 - 7.5 mg/dL
		Children: 1.5 g/L
		(150mg/dL)

THE PERIODIC TABLE OF ELEMENTS

18	VIIIA						22			3						1					
17	VIIA				=	(10)	400	Ç			ر د اس د اس					85	At	210			
16	VIA				<u>(</u>		22	(C)	. E.		8	S.	52	Te	127.6	84	Po	210			
15	VA				12	c				33	As	74.92	51	Sb	121.8	83	Bi	208.9			
14	IVA		-	7.0 3.0			14	Si	28.09	32	g	72.59	50	Sn	118.7	82	Pb	207.2			
13	IIIA			5	B	10.81	13	Al	26.9	31	Ga	69.7	64	In	114.8	81	I	204.4			
12	E									30	Zn	65.37	48	Cq	112.4	08	Hg	200.6			
11	B		,		†					29	Cn	63.54	47	Ag	107.9	62	Au	196.9			
10		TALS			TOIDS					28	Z	58.71	46	Pd	106.4	78	Pt	195.1			
6	VIIIB	NON-METALS			METALLOIDS					27	ပိ	58.71	45	Rh	102.9	11	Ir	192.2	109	Une	
∞		Z								56	Fe	58.85	4	Ru	101.1	92	SO	190.2	801	Uno	
7	VIIB						METALS			25	Mn	54.9	43	Tc	6.86	75	Re	186.2	107	Uns	
9	VIB						Σ	: ↑		24	C	52.01	42	Mo	95.94	74	≯	183.8	106	Unh	
5	VB					_		1		23	>	50.94	41	S	91.22	73	Ta	180.9	105	Unp	
4	IVB						•			22	Ţ	47.90	40	Zr	91.22	72	Hf	178.5	104	Ung	
3	IIIB									21		Sc 44.96	39	X	88.91	71	Lu	174.9		Lr	
2	IIA			4	Be	9.01	12	Mg	24.31	20	Ca	40.08	38	Sr	87.62	99	Ba	137.3	88	Ra	226.0
_	IA	ı H	1.008	3	Li	6.94	11	Na	22.99	19	¥	39.10	37	Rb	85.47	55	S	132.9	87	Fr	223
Group		Period 1			7			m			4	•		2			9			7	

	57	58	59	09	61	62	63	64	65	99	<i>L</i> 9	89	69	70
Lanthanides		Ce	Pr	PN	Pm	Sm	Eu	P9	$\mathbf{T}\mathbf{p}$	Dy	Ho	Er	Tm	Yb
	138.9	140.1	140.9	144.2	146.9	150.9	151.3	157.3	158.9	162.5	164.9	167.3	168.9	173.0
	68	06	91	92	93	94	95	96	26	86	66	100	101	102
Actinides	Ac	Th	Pa	n	dN	Pu	Am	Cm	Bk	Ct	Es	Fm	рW	Š
	227.0	232.0	231.0	238.0	237.1	239.1	241.1	247.1	249.1	251.1	254.1	257.1	258.1	255
													1	1

Numbers below the symbol indicates the atomic masses; and the numbers above the symbol indicates the atomic numbers.

Useful Relations					General Data		
PT) = 2 47801	1/201						4
(AVI)298-15K-2-4/07 KJ/IIIOI	IOIII/CX				speed of light	၁	2.997 925x10 ⁸ ms ⁻¹
,)298	693 V				charge of proton	e	1.602 19x10 ⁻¹⁹ C
ŧ	98.15 50	100.15 298.15 500.15 1000.15			Faraday constant	F=Le	9.648 46x10 ⁴ C mol ⁻¹
T/Cm ⁻¹ : 69.61	207.22 34	347.62 695.13			Boltzmann constant	k	1,380 66x10 ⁻²³ J K ⁻¹
1mmHg=133.222 N m ⁻²	m ⁻²				Gas constant	R=Lk	8.314 41 J K ⁻¹ mol ⁻¹
hc/k=1.438 78x10 ⁻² m K	m K			Address of the control of the contro			8.205 75x10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
latm	1 cal	1 eV		lcm ⁻¹			
-1.01325x10 ⁵ Nm ⁻²	-4.184 J	=1.602 189x10 ⁻¹⁹ J	10-19 J	$=0.124$ x 10^{-3} eV	Planck constant	h	6.626 18x10 ⁻³⁴ .Is
=760torr		=96.485 kJ/mol	lou	$=1.9864 \times 10^{-23} J$		4 - 4	
=1 bar		= 8065.5 cm ⁻¹	1			$n = \frac{\pi}{2\pi}$	1.054 59x10 ⁻³⁴ Js
					Avogadro constant	L or Nav	6.022 14x10 ²³ mol ⁻¹
SI-units:		A STATE OF THE STA			Atomis mass unit	n	1.660 54x10 ⁻²⁷ kg
$I L = 1000 ml = 1000 cm^3 = 1 dm^3$	$0cm^3 = I c$	tm³			Electron mass	m,	9.109 39x10 ⁻³¹ kg
dm = 0.1 m					Proton mass	m	1.672 62x10 ⁻²⁷ kg
1 cal (thermochemical) = 4.184 J	al) = 4.184	ſ			Neutron mass	mn	$1.674 93 \times 10^{-27} \text{ kg}$
dipole moment: 1 Debye = $3.335 64 \times 10^{-30} \text{ C m}$	ebye = 3.3	35 64x10 ⁻³⁰ C	· E		Vacuum permittivity	$E_{o} = \mu_{o}^{-1}c^{-2}$	8.854 188x10 ⁻¹² J ⁻¹ C ² m ⁻¹
force: $IN=IJ m^{-1} = Ikgms^{-2} = 10^5$ dyne pressure: $IPa=INm^{-2} = 1Jm^{-3}$	$kgms^{-2}=10$	dyne press	ure: IPa	$=INm^{-2}=1Jm^{-3}$	Vacuum permeability	щ°	4πx10-7 Js ² C- ² m ⁻¹
$IJ = I Nm$ power; $1W = 1J s^{-1}$		pote	potential: 1V =1 J C ⁻¹	'=1 J C ⁻¹	Bohr magneton	$\mu_B = e\hbar/2m_o$	-
magnetic flux: 1T=1Vsm ⁻² =1JCsm ⁻²	Vsm ⁻² =1JC		current: 1A=1Cs ⁻¹	=1Cs ⁻¹	Nuclear magneton	$\mu_{N} = \frac{e\hbar}{2m_{p}}$	5.05079x10 ⁻²⁷ JT ⁻¹
<u>Prefixes:</u>		A Maria and the Community of the land of the Community of			Gravitational constant	Ð	6.67259x10 ⁻¹¹ Nm ² kg ⁻²
u	m	p o	k	M G	Gravitational	9	9.80665 ms ⁻²
nano			kilo	ä	acceleration		
10-12 10-3 10-6	10-3	10^{-2} 10^{-1}	103	106 109	Bohr radius	9.	5 701 77-10-11