

UNIVERSITY OF SWAZILAND

FACULTY OF HEALTH SCIENCES

Department of Environmental Health sciences

Supplementary examination 2013/14

Title : Instrumental methods for environmental analysis

Code : EHM 212

Time : 2 hours

Marks : 100

Instructions:

1. Answer any 4 questions,

- 2. Each question weighs 25 marks,
- 3. Start each question on a fresh page,
- 4. Non-programmable scientific calculators may be used,

Additional material;

• Graph paper,

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

QUESTION 1

- a) Define the following terms as applied in analytical chemistry:
 - Solvent extraction
- Capillary action ii)
- iii) Retention volume
- iv) Resolution
- Separation factor v)
- [6] Phase ratio vi)
- b) What assumptions are made in the application of the following techniques
 - [2] Standard additions i) [2]
- Linear least squares method ii)

[5]

- c) Describe the procedure for the solvent extraction of a solute from a 50 mL aqueous sample, using 100 mL carbon tetrachloride as the organic phase.
- d) The partition coefficient of Arsenite chloride (AsCl₃) between ether and 6 M HCl acid is 0.54. How many times must one extract 50 cm³ of 6 M HCl acid containing As with 20 cm³ portions of ether in order to remove 98 % of the As?
- e) Give the main advantages of Gas Chromatography (GC) over other separation techniques. [5]

QUESTION 2

- a) Define an external standard calibration and the ideal property that the standard is expected to have.
- b) The phosphorus content in a urine sample was analysed by employing a spectrophotometric method. The data for the standards and sample are given below:

Standard	1	2	3	4	Urine sample
P (mg/L)	1.00	2.00	3.00	4.00	X
Absorbance	0.205	0.410	0.615	0.820	0.625

Employ the least squares regression method to:

- i) Calculate the slope, intercept and concentration of phosphorus in the urine [10] sample.
- ii) Plot the best straight, i.e. the best least square line.
- c) To determine the concentration of Cr in soil, six standard solutions of Cr⁶⁺ were prepared and the necessary colouring agents added. A UV-vis spectrophotometer was used to measure the absorbance for each solution at a particular wavelength. The results are in the table below. The unknown was measured to have an absorbance of 0.418 and the blank, 0.003 absorbance units.

Solution Number	Concentration (mg/L)	Absorbance (a.u.)	
1	0	0.003	
2	1	0.078	
3	2	0.163	
4	4	0.297	
5	6	0.464	
6	8	0.600	

i) Define a reagent blank?

- ii) The absorbance reading for the reagent blank above is not characteristic of a blank. Explain why the blank reading is not zero and how this effect is corrected for the experiment. [3]
- iii) Determine the concentration of the unknown using the graphical method. [4]

QUESTION 3

With respect to Gas Chromatography (GC),

a)	Draw a fully labelled schematic diagram of a GC.	[6]		
b)	Give the ideal properties of a good detector	[5]		
c)	c) What are the important considerations for liquid stationary phase materials used in GL			
		[5]		
d)) The retention time, t_r , of a solute is 25.0 s on a column with $N = 5.4 \times 10^3$. Calculate;			
	i) W _{1/2} (width at half the peak height)	[3]		
	ii) W, the expected base width of the peak.	[2]		
e)	A solute was eluted completely from a chromatographic column over 2 mins, 4	10 sec.		
	Calculate its retention volume if its flow rate is 20 mL/min.	[4]		

QUESTION 4

With reference to Thin Layer Chromatography (TLC);

- a) Give four (4) things that TLC can achieve. [4]
- b) Give an example or name of a process for each of the following as used in TLC:
 - i) A stationary phase,
 - ii) Solid support on which the stationary phase in mounted,
 - iii) Mechanism of separation of solute between the mobile and stationary phases. [3]
- c) Briefly describe the procedure (steps) for the development of a chromatogram and the detection of analyte spots.
 [7]
- d) For the phrase: ' R_f value',

	1)	Give its meaning,	Γτl
	ii)	What is the mean of a low R_f value versus a high R_f value during separation	tion of
		polar compounds from a mixture?	[3]
	iii)	Use a diagrammatical illustration to show how it can be determined.	[5]
	iv)	Give two (2) factors that influence the R_f value of a compound.	[2]
QUES	STION :	5	
a)	For the	wall coated tubular column used in GC, diagrammatically illustrate its	nain
	structu	ral features.	[5]
b)	For the	e electron capture detector (ECD) used as a GC detector, discuss,	
	i)	Its function,	
	ii)	The factors determining its choice,	
	iii)	Its desirable properties.	[5]
c)	Define	column efficiency, as used in GC. Explain how column efficiency is aff	ected by
	the pla	te height and the number of theoretical plates.	[5]
d)	With r	espect to the solvent extraction of metals,	
	i)	Define a chelating agent.	[1]
	ii)	Write the equation for the formation of a metal chelate (complex), and i	dentify the
		reactants and products.	[3]
	iii)	Give two (2) properties of a metal chelate formed from the solvent extra	ection of a
		metal as a metal chelate.	[2]
e)	Define	the following figures of merit (FOM) as applied in data assurance proto	cols;
	i)	Sensitivity,	
	ii)	Detection limits (DL),	
	iii)	Linear dynamic range,	
	iv)	Limits of quantitation (LOQ)	[4]