

UNIVERSITY OF SWAZILAND

FACULTY OF HEALTH SCIENCES

Department of Environmental Health sciences

Supplementary Examination 2013/14

Title : Instrumental methods for environmental analysis

Code: EHM 204

Time : 2 hours

Marks: 100

Instructions:

- 1. Answer any 4 questions,
- 2. Each question weighs 25 marks,
- 3. Start each question on a fresh page,
- 4. Diagrams and graphs should be large and clearly well labelled,
- 5. Non-programmable scientific calculators may be used.

Additional material;

- Graph papers (2),
- Periodic table,
- A table of scientific constants

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR

QUESTION 1

- a) State the important factors to be considered when choosing a method for the analysis of an environmental sample. [5]
- b) Explain the term 'sampling' as used in environmental analysis. What precautionary steps should be taken to ensure that a representative sample is taken for instrumental analysis? [5]
- c) of the most common pre-treatment steps usually employed for environmental analysis. [5]
- d) List three (3) figures of merit commonly used to express precision of an instrument. [3]
- e) A solution containing 8.75 ppm KMnO₄ has a transmittance of 0.743 in a 1-cm cell at 540 nm. Calculate the molar absorptivity of KMnO₄. [5]
- f) Give the most common material types that are used to make cuvettes employed as sample containers in a UV spectrometer. [2]

QUESTION 2

- a) Define the term 'deviations from Beer's law. Using a graphical illustration, distinguish between positive and negative deviations from Beer's law. [4]
- b) Explain the difference between 'real deviations' from Beer's law and those that are due from instrumental and chemical factors. [3]
- c) Explain the observed differences in spectra between atomic and molecular absorptions. [4]
- d) A sophisticated ultraviolet/visible/near-IR instrument has a wavelength range of 185 to 3000 nm.
 - i. What are its wave number and frequency ranges? [4]
 - ii. Hence, calculate the energy (J) of a photon emitted at this wavelength. [2]
- e) Draw a large, clearly labeled schematic diagram of a double beam UV spectrometer. [6]
- f) What are the advantages of a double beam over a single beam UV spectrometer? [2]

QUESTION 3

A pharmaceutical company is suspected of disposing effluent waste that contains the pollutant metal lead, into a river. Pharmaceutical wastes are considered difficult matrices to extract analytes from. To determine the concentration, a series of solutions are made by adding 0.1, 0.2, 0.3, 0.4 and 0.5 mL of a 10 mgL⁻¹ lead standard solution to 100 mL aliquots of the unknown solution. The following results were obtained:

Volume std	0	0.1	0.2	0.3	0.4	0.5
(mL)						
Absorbance (at	u) 0.27	0.37	.0,53	0.65	0.75	0.88

- a) Define the following terms as applied above:
 - i. Analyte,
 - ii. Aliquot,
 - iii. Matrix,

	iv. Standard solution.	[4]
b)	Explain the phrase; 'extraction of analyte from matrix' with respect to atomic absorption	on
	spectrometry.	[1]
c)	Give one such example of an extraction technique that can be used to extract the lead.	Justify
	your choice of technique.	[4]
d)	Calculate the concentration of lead at each standard addition in µgL ¹ .	[5]
e)	Plot a calibration curve and determine the concentration of the unknown in $\mu g L^{-1}$.	[6]
f)	Express the concentration above (e) in mg/L.	[2]
g)	Describe what would happen if the concentration was below the detection limits of the	
	instrument. What steps would you undertake to correct this problem?	[3]
QUES	TION 4	
For the	Electrothermal atomic absorption spectrometer (ETAAS) or graphite furnace,	
a)	State its advantages in elemental determinations,	[4]
b)	Discuss the stages involved in the atomization process of a sample,	[8]
c)	What is the role of the argon gas?	[2]
d)	Draw and fully label a schematic for a hollow cathode lamp.	[5]
e)	Explain the operation of a photomultiplier tube detector, using a schematic diagram to	illustrate
		[6]
QUES'	TION 5	

QU

For the inductively coupled plasma atomic emission spectroscopy (ICP-AES) and atomic absorption spectroscopy (AAS),

a)	What are the advantages of an ICP flame over conventional flames?	[2]
b)	Give two (2) types of plasma commonly employed to generate a flame in ICP-AES.	[2]
c)	What are the advantages of ICP-AES over AAS technique?	[5]
d)	Explain the concept of nebulization using an appropriate schematic diagram.	[5]
e)	What is a monochromator?	[2]
f)	For a spectrometer, list the components of a monochromator and state the respective f	unctions of
	each component given.	[8]
g)	What are chromophores?	[1]

THE PERIODIC TABLE OF ELEMENTS

18	VIIIA	Her Her	Ne.	18 AT 39 05	36 K 83 80		R R 222	
17	VIIA		6 Н	17 17 25 4 5 4	35 Br 7991	53 I 1269	85 At 210	
16	VIA		8.0	16.00 16 S 39.06	34 Se 778.96	52 Te 127.6	84 Po 210	· .
15	VA		Z		33 As 74.92	51 Sb 121.8	83 Bi 208.9	
14	IVÀ		9 D	Si 28.09	32 Ge 72.59	50 Sn 118.7	82 Pb 207.2	
13	IIIA	.	5 B	10.81 13 A1 26.9	31 Ga 69.7	49 In 114.8	81 T1 204.4	
12	IIB				30 Zn 65.37	Cd Cd	80 Hg 200.6	
11	IB		ţ		29 Cu 63.54	47 Ag 107.9	79 Au 196.9	•
10		TALS	METALLOIDS		28 Ni 58.71	46 Pd 106.4	78 Pt 195.1	
6	VIIIB	NON-METALS	METAI		27 C0 58.71	45 Rh 102.9	77 Ir 192.2	109 Une
8		Z			26 Fe 55.85	44 Ru 101.1	76 Os 190.2	108 Uno
7	VIIB			METALS	25 Mn 54.9	43 Tc 98.9	75 Re 186.2	107 Uns
9	VIB			_ ↑	24 Cr 52.01	42 Mo 95.94	74 W 183.8	106 U nh
5	VB		:		23 V 50.94	41 Nb 91.22	73 ° Ta Ta 180.9	105 Unp
4	IVB				22 Ti 47.90	40 Zr 91.22	72 Hf 178.5	104 Unq
3	IIIB				21 Sc 44.96	39 Y 88.91	71 Lu 174.9	103 . Lr 257
2	IIA		Pe Pe	12 Mg 24.31	20 Ca 40.08	38 Sr 87.62	56 Ba 137.3	88 Ra 226.0
_	IA	- H	٠. <u>۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲</u>	Na 22.99	19 K 39.10	37 Rb 85.47	55 Cs 132.9	87 Fr 223
Group		Period 1	2	m	4	ν.	9	7

	57	58	65	09	61	62	63	64	9	99	. 67	89	69	70
Lanthanides	La	Ce	Pr	PZ	Pm	Sm	Eu	Сq	$\mathbf{T}\mathbf{p}$	Dy	Ho	Er	Tm	ΧP
	138.9 140.1		140.9	144.2	146.9	150.9	151.3	157.3	158.9	162.5	164.9	167.3	168.9	173.0
	68	06	16	92	93	94	95	96	- 26	86	66	100	101	102
Actinides	Ac	Th	Pa	þ	dN	Pu	Am	Cm	Bk	Ç	ES	Fm	Md	Ž
	227.0	227.0 232.0	231.0	238.0	237.1	239.1	241.1	247.1	249.1	251.1	254.1	257.1	258.1	255
Numbers below the symbol indicates the atomic masses; and the n	he atomic masses; and the	masses; a	nd the nun	nbers abo	ve the syn	nbol indic	ates the at	omic num	bers.					

Cuanday	Symbol	Value	General data and
Spead of light	c	2.997 924 58 x 105 m s 11	fundamental
Charge			constants
Faraday	F= eN _A ′	9.5433 × 10°C mol-1	
Boltzmann	ř .	1'380 65 × 10-±3 K-,	
Gas constant	$R = kN_A$	8.314.51 J.K-1 mol-1	<u>:</u>
:	•	3.205 78 × 10 ⁻² dm² atm K ⁻¹ ma	Į .,
		62.354 L Torr K-1 mai-1.	•
Planck constant	h .	6.625 08 x 10-34 J s	
	a = h/2 =	1.054'57 × 10-34 J s	
Avogacro	N _A	5.022 14 × 10 ⁻² mg/ ⁻¹	·
Atomic mass	. · ·	1.860 \$4 x 10 ⁻²⁷ kg	
Mass of	•		•
electron .	m,	9.109 39 × 10 ⁻³¹ kg	•
proton	.m,	1,572-62 × 10 ⁻¹⁷ kg	
neutron	761 ₄ 1 - 71 7 1 1000	~~~1.874.93 × 10~~ kg	••
Vacuum permeability:	S. Pa	4±×10-1125C-3M-1	
		4x x 10-7 T2 J-1 m2	
Vacuum	$u_1 = 1/c^2 \mu_0$	8.854 15 × 10-12 J-1 C1 m	• • • • • • • • • • • • • • • • • • • •
* besiminary	. AREO	1.112 65 × 10 ⁻¹³ J ⁻¹ C ¹ m	at the same was a second
nersngsm rácē		9.27402 × 10-14 JT-1	
Nuclear magneton	u _m = en/2m,	5.050 79 × 10-11 1-1	
Section g	£.	2,002,32	
Bonr radius	3η = 4πεηħ²/επ,	5-291 77 × 10 ⁻¹¹ m	. •
Rycherg constant	ñ. = m.e*/8h²	= 1.097 37 × 10 ⁸ cm ⁻¹	•
Fine structure constant	c = uge ¢; Zn	7.297 35 × 10 ⁻³	
lenoblesiverD Intrenos	G	5.672 59 × 10 ⁻¹¹ N m ² kg	-2
Standard Standard	s	9.806 65 m x -?	
of free fall;			i izsu idailnedi values
i p	пип	e dk M	g Prefixes .
famto pico	nano miero mi	ili centi deci kilo mega	gisa .
107,18 107.1	10-1 10-1	-2 10-2 10-1 103 10°	108

•