UNIVERSITY OF SWAZILAND ### FACULTY OF HEALTH SCIENCES ## Department of Environmental Health sciences # Supplementary Examination 2013/14 Title : Instrumental methods for environmental analysis Code: EHM 204 Time : 2 hours Marks: 100 ### Instructions: - 1. Answer any 4 questions, - 2. Each question weighs 25 marks, - 3. Start each question on a fresh page, - 4. Diagrams and graphs should be large and clearly well labelled, - 5. Non-programmable scientific calculators may be used. ### Additional material; - Graph papers (2), - Periodic table, - A table of scientific constants DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE CHIEF INVIGILATOR ### **QUESTION 1** - a) State the important factors to be considered when choosing a method for the analysis of an environmental sample. [5] - b) Explain the term 'sampling' as used in environmental analysis. What precautionary steps should be taken to ensure that a representative sample is taken for instrumental analysis? [5] - c) of the most common pre-treatment steps usually employed for environmental analysis. [5] - d) List three (3) figures of merit commonly used to express precision of an instrument. [3] - e) A solution containing 8.75 ppm KMnO₄ has a transmittance of 0.743 in a 1-cm cell at 540 nm. Calculate the molar absorptivity of KMnO₄. [5] - f) Give the most common material types that are used to make cuvettes employed as sample containers in a UV spectrometer. [2] ### **QUESTION 2** - a) Define the term 'deviations from Beer's law. Using a graphical illustration, distinguish between positive and negative deviations from Beer's law. [4] - b) Explain the difference between 'real deviations' from Beer's law and those that are due from instrumental and chemical factors. [3] - c) Explain the observed differences in spectra between atomic and molecular absorptions. [4] - d) A sophisticated ultraviolet/visible/near-IR instrument has a wavelength range of 185 to 3000 nm. - i. What are its wave number and frequency ranges? [4] - ii. Hence, calculate the energy (J) of a photon emitted at this wavelength. [2] - e) Draw a large, clearly labeled schematic diagram of a double beam UV spectrometer. [6] - f) What are the advantages of a double beam over a single beam UV spectrometer? [2] # **QUESTION 3** A pharmaceutical company is suspected of disposing effluent waste that contains the pollutant metal lead, into a river. Pharmaceutical wastes are considered difficult matrices to extract analytes from. To determine the concentration, a series of solutions are made by adding 0.1, 0.2, 0.3, 0.4 and 0.5 mL of a 10 mgL⁻¹ lead standard solution to 100 mL aliquots of the unknown solution. The following results were obtained: | Volume std | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | |----------------|---------|------|-------|------|------|------| | (mL) | | | | | | | | Absorbance (at | u) 0.27 | 0.37 | .0,53 | 0.65 | 0.75 | 0.88 | - a) Define the following terms as applied above: - i. Analyte, - ii. Aliquot, - iii. Matrix, | | iv. Standard solution. | [4] | |---------|---|------------| | b) | Explain the phrase; 'extraction of analyte from matrix' with respect to atomic absorption | on | | | spectrometry. | [1] | | c) | Give one such example of an extraction technique that can be used to extract the lead. | Justify | | | your choice of technique. | [4] | | d) | Calculate the concentration of lead at each standard addition in µgL ¹ . | [5] | | e) | Plot a calibration curve and determine the concentration of the unknown in $\mu g L^{-1}$. | [6] | | f) | Express the concentration above (e) in mg/L. | [2] | | g) | Describe what would happen if the concentration was below the detection limits of the | | | | instrument. What steps would you undertake to correct this problem? | [3] | | | | | | | | | | QUES | TION 4 | | | For the | Electrothermal atomic absorption spectrometer (ETAAS) or graphite furnace, | | | a) | State its advantages in elemental determinations, | [4] | | b) | Discuss the stages involved in the atomization process of a sample, | [8] | | c) | What is the role of the argon gas? | [2] | | d) | Draw and fully label a schematic for a hollow cathode lamp. | [5] | | e) | Explain the operation of a photomultiplier tube detector, using a schematic diagram to | illustrate | | | | [6] | | | | | | | | | | QUES' | TION 5 | | # QU For the inductively coupled plasma atomic emission spectroscopy (ICP-AES) and atomic absorption spectroscopy (AAS), | a) | What are the advantages of an ICP flame over conventional flames? | [2] | |----|---|-------------| | b) | Give two (2) types of plasma commonly employed to generate a flame in ICP-AES. | [2] | | c) | What are the advantages of ICP-AES over AAS technique? | [5] | | d) | Explain the concept of nebulization using an appropriate schematic diagram. | [5] | | e) | What is a monochromator? | [2] | | f) | For a spectrometer, list the components of a monochromator and state the respective f | unctions of | | | each component given. | [8] | | g) | What are chromophores? | [1] | # THE PERIODIC TABLE OF ELEMENTS | 18 | VIIIA | Her
Her | Ne. | 18
AT
39 05 | 36
K
83 80 | | R
R
222 | | |-------|-------|-------------|--|----------------------------------|--------------------------|--------------------------|--------------------------------------|---------------------------| | 17 | VIIA | | 6 Н | 17
17
25 4 5 4 | 35
Br
7991 | 53
I
1269 | 85
At
210 | | | 16 | VIA | | 8.0 | 16.00
 16
 S
 39.06 | 34
Se
778.96 | 52
Te
127.6 | 84
Po
210 | · . | | 15 | VA | | Z | | 33
As
74.92 | 51
Sb
121.8 | 83
Bi
208.9 | | | 14 | IVÀ | | 9 D | Si
28.09 | 32
Ge
72.59 | 50
Sn
118.7 | 82
Pb
207.2 | | | 13 | IIIA | . | 5
B | 10.81
13
A1
26.9 | 31
Ga
69.7 | 49
In
114.8 | 81
T1
204.4 | | | 12 | IIB | | | | 30
Zn
65.37 | Cd Cd | 80
Hg
200.6 | | | 11 | IB | | ţ | | 29
Cu
63.54 | 47
Ag
107.9 | 79
Au
196.9 | • | | 10 | | TALS | METALLOIDS | | 28
Ni
58.71 | 46
Pd
106.4 | 78
Pt
195.1 | | | 6 | VIIIB | NON-METALS | METAI | | 27
C0
58.71 | 45
Rh
102.9 | 77
Ir
192.2 | 109
Une | | 8 | | Z | | | 26
Fe
55.85 | 44 Ru 101.1 | 76
Os
190.2 | 108
Uno | | 7 | VIIB | | | METALS | 25
Mn
54.9 | 43
Tc
98.9 | 75
Re
186.2 | 107
Uns | | 9 | VIB | | | _ ↑ | 24
Cr
52.01 | 42
Mo
95.94 | 74
W
183.8 | 106
U nh | | 5 | VB | | : | | 23
V
50.94 | 41
Nb
91.22 | 73 ° Ta
Ta
180.9 | 105
Unp | | 4 | IVB | | | | 22
Ti
47.90 | 40 Zr 91.22 | 72
Hf
178.5 | 104
Unq | | 3 | IIIB | | | | 21
Sc
44.96 | 39
Y
88.91 | 71
Lu
174.9 | 103
. Lr
257 | | 2 | IIA | | Pe Pe | 12
Mg
24.31 | 20
Ca
40.08 | 38
Sr
87.62 | 56
Ba
137.3 | 88
Ra
226.0 | | _ | IA | -
H | ٠. <u>۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲</u> | Na
22.99 | 19
K
39.10 | 37
Rb
85.47 | 55
Cs
132.9 | 87
Fr
223 | | Group | | Period
1 | 2 | m | 4 | ν. | 9 | 7 | | | 57 | 58 | 65 | 09 | 61 | 62 | 63 | 64 | 9 | 99 | . 67 | 89 | 69 | 70 | |---|---------------------------|-------------|------------|-----------|------------|------------|-------------|----------|------------------------|-------|-------|-------|-------|-------| | Lanthanides | La | Ce | Pr | PZ | Pm | Sm | Eu | Сq | $\mathbf{T}\mathbf{p}$ | Dy | Ho | Er | Tm | ΧP | | | 138.9 140.1 | | 140.9 | 144.2 | 146.9 | 150.9 | 151.3 | 157.3 | 158.9 | 162.5 | 164.9 | 167.3 | 168.9 | 173.0 | | | 68 | 06 | 16 | 92 | 93 | 94 | 95 | 96 | - 26 | 86 | 66 | 100 | 101 | 102 | | Actinides | Ac | Th | Pa | þ | dN | Pu | Am | Cm | Bk | Ç | ES | Fm | Md | Ž | | | 227.0 | 227.0 232.0 | 231.0 | 238.0 | 237.1 | 239.1 | 241.1 | 247.1 | 249.1 | 251.1 | 254.1 | 257.1 | 258.1 | 255 | | Numbers below the symbol indicates the atomic masses; and the n | he atomic masses; and the | masses; a | nd the nun | nbers abo | ve the syn | nbol indic | ates the at | omic num | bers. | | | | | | | Cuanday | Symbol | Value | General data and | |---------------------------|----------------------------------|---|---| | Spead of light | c | 2.997 924 58 x 105 m s 11 | fundamental | | Charge | | | constants | | Faraday | F= eN _A ′ | 9.5433 × 10°C mol-1 | | | Boltzmann | ř . | 1'380 65 × 10-±3 K-, | | | Gas constant | $R = kN_A$ | 8.314.51 J.K-1 mol-1 | <u>:</u> | | : | • | 3.205 78 × 10 ⁻²
dm² atm K ⁻¹ ma | Į ., | | | | 62.354 L Torr K-1 mai-1. | • | | Planck constant | h . | 6.625 08 x 10-34 J s | | | | a = h/2 = | 1.054'57 × 10-34 J s | | | Avogacro | N _A | 5.022 14 × 10 ⁻² mg/ ⁻¹ | · | | Atomic mass | . · · | 1.860 \$4 x 10 ⁻²⁷ kg | | | Mass of | • | | • | | electron . | m, | 9.109 39 × 10 ⁻³¹ kg | • | | proton | .m, | 1,572-62 × 10 ⁻¹⁷ kg | | | neutron | 761 ₄ 1 - 71 7 1 1000 | ~~~1.874.93 × 10~~ kg | •• | | Vacuum
permeability: | S. Pa | 4±×10-1125C-3M-1 | | | | | 4x x 10-7 T2 J-1 m2 | | | Vacuum | $u_1 = 1/c^2 \mu_0$ | 8.854 15 × 10-12 J-1 C1 m | • | | * besiminary | . AREO | 1.112 65 × 10 ⁻¹³ J ⁻¹ C ¹ m | at the same was a second | | nersngsm rácē | | 9.27402 × 10-14 JT-1 | | | Nuclear
magneton | u _m = en/2m, | 5.050 79 × 10-11 1-1 | | | Section g | £. | 2,002,32 | | | Bonr radius | 3η = 4πεηħ²/επ, | 5-291 77 × 10 ⁻¹¹ m | . • | | Rycherg constant | ñ. = m.e*/8h² | = 1.097 37 × 10 ⁸ cm ⁻¹ | • | | Fine structure constant | c = uge ¢; Zn | 7.297 35 × 10 ⁻³ | | | lenoblesiverD
Intrenos | G | 5.672 59 × 10 ⁻¹¹ N m ² kg | -2 | | Standard
Standard | s | 9.806 65 m x -? | | | of free fall; | | | i izsu idailnedi values | | i p | пип | e dk M | g Prefixes . | | famto pico | nano miero mi | ili centi deci kilo mega | gisa . | | 107,18 107.1 | 10-1 10-1 | -2 10-2 10-1 103 10° | 108 | •