# **University of Swaziland**



# Supplementary Examination - July 2014

# **BSc in Environmental Health Sciences I**

Title of Paper

: Algebra for Health Sciences

Course Number: EHM106

**Time Allowed** : Two (2) hours

## **Instructions:**

1. This paper consists of 2 sections.

2. Answer ALL questions in Section A.

3. Answer ANY 2 questions in Section B.

4. Show all your working.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

# Section A Answer ALL Questions in this section

- A.1 a. Give a concise definition of each of the following terms.
  - i. A polynomial

[2 marks]

ii. The transpose of a matrix

[2 marks]

iii. The modulus of a complex number

[2 marks]

iv. The common logarithm of a number

[2 marks]

b. Sketch the graph of  $y = e^x$ .

[2 marks]

**A.2** a. Find the formula of the n-th term for the AP

$$10, 22, 34, \cdots$$
.

[4 marks]

- b. Given the vectors  $\underline{A} = 4\hat{i} + 3\hat{j} + 12\hat{k}$  and  $\underline{B} = \hat{i} + 2\hat{j} \frac{1}{2}\hat{k}$ , find
  - i. |<u>A|</u>

[4 marks]

ii.  $\underline{A} \cdot \underline{B}$ 

[4 marks]

c. Given the matrices  $A=\begin{pmatrix}1&-1&2\\-2&2&-1\end{pmatrix}$  and  $B=\begin{pmatrix}1&-1\\0&1\\2&-2\end{pmatrix}$  , find the value

of

$$3A-2B^T$$
.

[5 marks]

- d. Find the value of
  - i.  $\log_3 45,210$  (correct to 3 s.f.)

[2 marks]

ii.  $\log 10^{-2m}$ 

[2 marks]

- iii. 3i(3+4i) 4i(4-3i) and express your answer in the form x + iy [5 marks]
- e. Use synthetic division to find the quotient and remainder of

$$\frac{x^4 + 16}{x + 2}.$$
 [5 marks]

f. Use the binomial theorem to expand the following expression and simplify term by term

$$(2x+3y)^5$$

[9 marks].

### Section B

## Answer ANY 2 Questions in this section

**B.1** a. Find the value of

$$\left|\begin{array}{ccccc} 2 & 0 & -1 & 0 \\ -1 & 3 & 0 & 1 \\ 0 & -2 & 0 & -5 \\ 0 & 1 & 2 & 0 \end{array}\right|$$

[10 marks]

- b. Given the vectors  $\underline{A} = 2\hat{i} 4\hat{j} + 10\hat{k}$  and  $\underline{B} = 4\hat{i} + 2\hat{j} 2\hat{k}$ , find
  - the angle between the vectors  $\underline{A}$  and  $\underline{B}$  (correct to 1 d.p.)

[7 marks]

ii.  $\underline{A} \times \underline{B}$ 

[8 marks]

**B.2** a. Find the value of

i. 
$$\sum_{n=5}^{50} (5n+10)$$

[6 marks]

i. 
$$\sum_{n=5}^{50} (5n + 10)$$
  
ii.  $\sum_{n=0}^{\infty} 70 \left(\frac{1}{2}\right)^n$ 

[4 marks]

- b. A seating section of a stadium has 45, 52 and 59 seats in the first, second and third rows, respectively. If the number of seats increase by 7 between successive rows, and the total number of rows is 19, find the total number of seats in the section. [3 marks]
- c. Given that P(5, -12) lies on the terminal side of the angle  $\theta$ , find the *exact* values of

i. 
$$\cos \theta$$

[3 marks]

ii.  $\sin \theta$ 

[3 marks]

d. Prove

$$\sec A - \cos A = \sin A \tan A$$
.

[6 marks]

#### **B.3**

a. Find the quotient and remainder of the division

$$\frac{x^4 + x^3 - x + 3}{x^2 + 1}$$
. [9 marks]

b. Find the values of A and B such that both x-4 and x+3 are factors of  $P(x)=x^3+Ax^2+Bx+4$ . [5 marks]

c. Expand

$$\left(1-i\sqrt{3}\right)^3$$

and express your answer in the form x + iy, using

i. the binomial theorem

[7 marks]

ii. de Moivre's theorem

[4 marks]

### **B.4**

a. Express as a single logarithm with coefficient of 1.

$$4\ln(2\sqrt{x}) - \ln\left(4x^2\right).$$

[5 marks]

b. Solve

$$\log_8 2 + \log_8 (x - 5) = 2.$$

[4 marks]

c. The book value of a machine is given by

$$B(t) = 25,000e^{-0.04t},$$

where t is its age in years. Find its

i. value after years

[2 marks]

ii. half-life

[5 marks]

d. Find the centre and radius of the circle defined by

$$x^2 + y^2 - 8x + 14y - 35 = 0.$$

Hence, make a sketch of the circle.

[9 marks]