University of Swaziland

Final Examination - November 2013

BSc in Environmental Sciences I

Title of Paper

: Algebra for Health Sciences

Course Number: EHM106

Time Allowed

: Two (2) hours

Instructions:

1. This paper consists of 2 sections.

2. Answer ALL questions in Section A.

3. Answer ANY 2 questions in Section B.

4. Show all your working.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Section A Answer ALL Questions in this section

- **A.1** a. Give a concise definition of each of the following terms.
 - i. A polynmial

[2 marks]

ii. The transpose of a matrix

[2 marks]

iii. The common logarithm of a number

[2 marks]

b. State de Moivre's Theorem

[2 marks]

c. Sketch the graph of $y = \ln x$.

[2 marks]

A.2 a. Find the sum of the first 50 terms of the AP

$$100, 92, 84, \cdots$$

[4 marks]

- b. Given the vectors $\underline{A} = 4\hat{i} 4\hat{j} + 8\hat{k}$ and $\underline{B} = i + 2\hat{j} + \frac{1}{2}\hat{k}$, find
 - i. |<u>A|</u>

[4 marks]

ii. $\underline{A} \cdot \underline{B}$

[4 marks]

c. Given the matrices $A=\left(\begin{array}{ccc}1&-3&2\\-2&1&-1\end{array}\right)$ and $B=\left(\begin{array}{ccc}2&-1\\0&-1\\3&-2\end{array}\right)$, find the value

of

 B^TA^T .

[5 marks]

d. Find the value of

i.
$$\log_b b^{-5}$$

[2 marks]

ii. $\ln e^m$

[2 marks]

- iii. (4-3i)(4i-3) and express your answer in the form x+iy
- [5 marks]
- e. Use synthetic division to find the quotient and remainder of

$$\frac{x^4 + 2x^3 - 13x + 21}{x+3}.$$

[5 marks]

f. Use the binomial theorem to expand the following expression and simplify term by term

$$\left(x+\frac{2}{x}\right)^5$$

[9 marks].

Section B

Answer ANY 2 Questions in this section

B.1 a. Use Cramer's rule to solve

$$2x - y + 3z = 0$$
 $x + 4y - z = 1$
 $5x + 2z = 17.$
[18 marks]

b. Find the *exact* area of the triangle with vertices A(1,1,1), B(3,-3,3) and C(-5,5,-5). [7 marks]

B.2 a. Find the value of

i.
$$\sum_{n=-5}^{50} (22 - 8n)$$
 [6 marks]

ii. $\sum_{n=0}^{\infty} 80 \left(-\frac{3}{4}\right)^n$ [4 marks]

ii.
$$\sum_{n=0}^{\infty} 80 \left(-\frac{3}{4}\right)^n$$
 [4 marks]

- b. A seating section of a stadium has 45, 52 and 59 seats in the first, second and third rows, respectively. If the number of seats increase by 7 between successive rows, and the total number of rows is 19, find the total number of seats in the section. [3 marks]
- c. Given that $\sin \theta = \frac{\sqrt{3}}{2}$ and θ in in QII, find the exact values of

i.
$$\cos \theta$$
 [2 marks]

ii.
$$\cos 2\theta$$
 [4 marks]

d. Find the general solution of

$$3 - 4\cos^2\theta = 0. [6 marks]$$

B.3

a. Find the quotient and remainder of the division

$$\frac{x^4 + 3x^3 - 2x + 3}{x^2 - 2}.$$
 [9 marks]

- b. Given that x 5 is a factor of the polynomial $P(x) = x^3 + Ax^2 + Bx 10$, while dividing P(x) by x + 3 leaves a remainder of -16, find the values of A and B. [5 marks]
- c. Find the equation of a circle centred at (-7,9) tangent to the x-axis, and express it in general form. [7 marks]
- d. Solve

$$9x^2 - 12x + 20 = 0.$$
 [4 marks]

B.4

a. Express as a single logarithm with coefficient of 1.

$$\ln\left(\frac{a^2}{bc}\right) + \ln\left(\frac{b^2}{ac}\right) + \ln\left(\frac{c^2}{ab}\right).$$
 [4 marks]

b. Solve

$$\log_3 2x - \log_3(x - 7) = 2.$$
 [4 marks]

c. In a college campus with a population of 2,000, the number of people infected by an air-borne infection is given by

$$P(t) = 2,000(1 - e^{-0.07t}),$$

where t is the number of days after the initial outbreak. Find the

i. number of people infected after 7 days

[2 marks]

ii. number of days it takes for 75% of college to be infected.

[4 marks]

d. For the binomial expansion of

$$\left(x^2-\frac{y}{x^2}\right)^{20},$$

find the

i. first 4 terms

[6 marks]

ii. the 18th term

[3 marks]