UNIVERSITY OF SWAZILAND Faculty of Health Sciences Department of Environmental Health Science

BSc Environmental Health Science

MAIN EXAMINATION PAPER MAY 2013

TITLE OF PAPER

: WATER DRAINAGE AND SEWERAGE

COURSE CODE

EHS:587

DURATION

2 HOURS

MARKS

100

INSTRUCTIONS

THERE ARE FIVE QUESTIONS IN THIS EXAM

ANSWER ANY FOUR OUT OF THE FIVE QUESTIONS

EACH QUESTION CARRIES A MAXIMUM OF 25 MARKS

: NO PAPER SHOULD BE BROUGHT INTO OR OUT OF THE

EXAMINATION ROOM

EHS 587 May 2013

QUESTION ONE (25 Marks)

	the following sewer syst	tems:		
i. Va	acuum sewerage	•••••••••••••••••••••••••••••••••••••••	[1.5 Marks	
B. Describe t	he factors that can lead to	0		
	i. Sanitary sewer o	verflows	.[1.5 Marks]	
	ii. Combined sewer overflows[1.5 Marks			
			_	
	111. Indicate the step	s needed to minimize these overflows.	[2 Marks]	
D. Match the	items in B against the it	ems in A	[5 Marks]	
D. Match the			[5 Marks]	
	items in B against the it Item A Curved sewers	Item B		
	Item A	Item B Consider private ownership of land		
	Item A Curved sewers Manholes Aggressive soil	Item B Consider private ownership of land Maintenance hole provision		
Des	Item A Curved sewers Manholes Aggressive soil ign depth of flow	Item B Consider private ownership of land Maintenance hole provision Economic/practical justification Illegal/inappropriate		
Des	Item A Curved sewers Manholes Aggressive soil ign depth of flow n of pumping stations	Item B Consider private ownership of land Maintenance hole provision Economic/practical justification Illegal/inappropriate Allow for free air ventilation		
Des Location V	Item A Curved sewers Manholes Aggressive soil ign depth of flow n of pumping stations Vidth of trench	Item B Consider private ownership of land Maintenance hole provision Economic/practical justification Illegal/inappropriate Allow for free air ventilation Cathodic protection		
Des Location V	Item A Curved sewers Manholes Aggressive soil ign depth of flow n of pumping stations	Item B Consider private ownership of land Maintenance hole provision Economic/practical justification Illegal/inappropriate Allow for free air ventilation		

QUESTION TWO (25 Marks)

A	.Describe with the help of a sketch inverted siphons showing the necessary
	appurtenances. State for what condition inverted siphons may be provided and the
	arrangement for handling the flows in inverted siphons.
	[5 Marks]
В.	If a valley crossing appears too deep for the provision of an inverted siphon, discuss how
	the sewer should be laid and what kind of sewer pipe would be suitable for such crossing.
	[5 Marks]
С.	List the advantages of backfilling sewers as quickly as possible. Also list the steps (activities) of backfilling
	[5 Marks]
D.	Describe the techniques used for the detection of leakages in manholes
	[5 Marks]
E.	Describe the techniques used for the cleaning of sewer pipes.
	[5 Marks]

QUESTION THREE (25 Marks)

A multi-family housing project is being developed on 1.4 Km² of rolling to flat ground. Zoning regulations establish a population density of 7500 persons per Km². The average daily sewage flow is 375 liters per person per day. The peak flow is 160% of the average flow. Infiltration allowance is 460 m³ per square km per day. Circular concrete pipe with n=0.013 will be used to flow with a minimum velocity of 0.45 m/sec at minimum flow which is 1/3 of the peak flow. The minimum velocity at peak flow is 0.6 m/sec. The maximum spacing between manholes is 150 meters. Using equation 3.1 and the partial flow diagram of Figure Q3.1 provided below:

- i. Determine the diameter of the sewer pipe for the final 150 meters between manholes numbers 20 and 21 which serves 0.25 km² in addition to the remaining 1.15 km².

$$Q = \left(\frac{0.312}{n}\right) * D^{\frac{8}{3}} * S^{1/2}(Eq. 3-1)$$

Where $Q = \text{sewer flow in } m^3/\text{sec}$

D = Sewer pipe diameter in meters

n = Manning's coefficient = 0.013

S = Slope of sewer pipe (m/m).

Figure Q3-1 Partial flow graph for Sewer flow calculation

QUESTION FOUR (25 Marks)

A.	Discuss the effects of	of urbanization on catchment hydrology[5 Marks]	
B.	systems which will	ctors omitted from the traditional cost-benefit analysis of sewerage make sewerage system a less favorable alternative. State these now they may be incorporated in the cost benefit analysis. [5 Marks]	
C.	Indicate also how so	ges and disadvantages of providing open channel drainage systems. me of the disadvantages of open channel drainage systems may be [5 Marks]	
D.	List the main conten	ts of a master drainage plan5 Marks]	
E.	Discuss how the following factors influence the provision urban drainage system;		
	i.	Technical	
	ii.	Socio economic	
	iii.	Financial and institutional factors	
	iv.	Operation and maintenance	

QUESTION FIVE (25 Marks)

The rectangular channel shown in Figure Q5.1 below is nearly horizontal, and it carries a discharge per unit width of $q = 1.20 \text{ m}^3/\text{sec-m}$. The flow depth upstream of the sluice gate is 1.6 m. A hydraulic jump occurs on the downstream side of the sluice gate.

Figure Q5.1. A horizontal open channel of rectangular cross section.

Hydraulic jump equation:

Energy loss due to hydraulic jump

$$h_{LJ} = \frac{(Y_3 - Y_2)^3}{4Y_2Y_3}$$
Eq. 5.2