UNIVERSITY OF SWAZILAND Faculty of Health Sciences Department of Environmental Health Science

B.Sc. Degree in Environmental Health Science

MAIN EXAMINATION PAPER MAY 2013

TITLE OF PAPER : WATER TREATMENT !

COURSE CODE

EHS:585

DURATION

: 2 HOURS

MARKS

100

INSTRUCTIONS

THERE ARE FIVE QUESTIONS IN THIS EXAM

ANSWER ANY FOUR OUT OF THE FIVE QUESTIONS

EACH QUESTION CARRIES A MAXIUM MARK OF 25%

NO PAPER SHOULD BE BROUGHT INTO OR OUT OF THE

EXAMINATION ROOM

Question One (25 Marks)

A	Compare the slow sand filter with the rapid sand filter in terms of: i) filtration rate is media diameter iii) filter run length and iv) regeneration method [5Marks]
В.	Describe the problem of media segregation in a rapid sand filter. What are the cause and effects of media segregation and how can this problem be overcome?[5 Marks]
C.	Describe the advantages of employing pre-coat filtration such as diatomaceous earth over granular media filtration. State how regeneration of pre-coat media is achieved.
D.	State the procedure for resanding of a slow sand filter when the minimum allowable depth of the filter is reached.
E.	List the principles of good management of slow sand filtration[5Marks].

Question Two (25 Marks)

A.	Evaluate the disinfection potential of the disinfectants listed in table Q1 below against the
	pathogens listed in the same table. Rate the potentials in terms of: Excellent, Good, Fair and
	Poor

Table Q1: Disinfection potential of disinfectants against pathogens.

	Free chlorine	Combined chlorine	Chlorine dioxide	Ozone	Ultraviolet light	
Bacteria						
Virus				· · · · · · · · · · · · · · · · · · ·		
Protozoa			· · · · · · · · · · · · · · · · · · ·			
Endospore		·				

- **B.** The chlorine residuals measured when various dosages of chlorine were added to a sample of water are given in Table Q2 below. Determine:
 - i. The breakpoint dosage[8 Marks]
 - ii. The design dosage to obtain a residual of 0.75 mg/lit free available chlorine.

 [8 Marks]

Table Q2; Chlorine residual in mg/L against chlorine added in sample of water.

Dosage	0.1	0.5	1	1.5	2	2.5	3
(mg/L)							
Residual	0.0	0.3	0.6	0.35	0.35	0.8	1.3
(mg/L							

Question Three (25 Marks)

A.	Arrange the following cations in the order of decreasing preference for absorption on to a cation exchanger: Na ⁺ , K ⁺ , Ca ²⁺ Hg ⁺ , Li ⁺ , Fe ²⁺
В.	List the advantages of choosing an ion exchange resin with a high affinity for the ion to be exchanged
C.	Write the equations for the removal NaCl from water using strong anion and strong cation exchangers. Write also the chemical reactions for the regeneration of the ion exchangers. [5 Marks]
D.	Compare the use of weak ion exchangers and strong ion exchangers in terms of exchange capacity, preference for adsorption and regeneration potential. [5 Marks]
E .	List five mechanisms by which the rate of film diffusion is increased in an ion exchange process

Question Four (25 Marks)

A. List five mech	List five mechanisms by which odour problems can be eliminated from drinking water.								
•••••••••••••	••••••	••••••	•••••	• • • • • • • • • • • •	•••••	• • • • • • • • • • • • •	.[5 Marks]		
B. An observer p						_	-		
dilutions for tes	ting which	are listed	in Table Q	1.1 below.	The respon	ses obtaine	d from the		
observer against	t each of th	e sample d	ilutions are	also listed	in the sam	e table.			
i. Comme	ent on the r	esponses o	btained fro	m this part	icular obse	erver and ev	valuate the		
suitabil	ity of this c	bserver fo	r the odour	test	•••••••	• • • • • • • • • • • • •	[3 Marks]		
ii. Calcula	te the thres	hold odou	r number (7	ON) accor	ding to this	s test result.	·		
						••••••	[2 Marks]		
Table Q4.1 Response	es obtained	from an o	bserver in a	n odour tes	st.				
mL of sample	1 2	^	4 /						
diluted to 200 mL	12	U	17	25	0	35	50		
Response				+	-	+	+		
	_								
C. For an odour tas									
which 25 mL of	the diluted	sample wa	as transferr	ed to the 20	00 mL odoi	ır flask to a	chieve		
the just detectab	le odour. D	etermine							
i. The Thre	shold odou	ır number ((TON)			£2	5 Markel		

Question Five (25 marks)

A.	Describe	the following water treatment processes in terms of: the method of removal o					
	targeted constituents, the membrane type used the pressure requirement and the rate of recovery.						
	i.	Micro membrane filtration					
	ii.	Ultra membrane filtration					
	iii.	Nano membrane filtration					
	iv.	Reverse osmosis					
		[5 Marks]					
		•					
В.	Compare	the following three types of membrane filtration processes:					
		i. Submerged filtration[2 Marks]					
		ii. Cross flow filtration[2 Marks]					
		iii. Dead end (transverse) filtration[1 Mark]					
C .	List the fa	actors that contribute to membrane fouling by dissolved organic matter.					
		[5 Marks]					
T)		1					
D.		he merits of combining membrane filtration treatment with i) coagulation ii)					
	activated	carbon[5 Marks]					
E.	A memb	rane module contains 8000 fibers. The fibers are 1 m long with an outside					
~		of 2 mm and 0.9 mm. Calculate the flux necessary to produce a flow of 2500					
		if flow is outside in[5 Marks]					